Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080367188> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2080367188 abstract "A mathematically rigorous theory of surface scatter that can explain the descrepancies between sur-face statistics determined directly from profiler measurements and those predicted indirectly from scatter measurements is presented. The theory is based on the assumption that the Spectral Density Function (SDF) of the random height variations is the fundamental invariant of the surface and not its Fourier transform, the autocorrelation function. The autocorrelation function and RMS roughness are then calculated from a finite Fourier integral operation whose limits of integration are determined by the measurement bandwidth, and thus, they depend not only on the intrinsic surface statistics but also on the measurement method. A simple form for the SDF that seems to match optical surfaces quite well is assumed. It encompasses surfaces with a definite autocorrelation length and those that have none at all, i.e. fractal surfaces. For the latter, the theory closely resembles that of 1/f noise in electrical systems where the RMS noise (equivalent to the RMS surface roughness) increases with signal bandwidth (equivalent to the surface or incident beam size). An extensive numerical calculation is performed to show that for smooth optical-like surfaces with RMS roughnesses much less than the wavelength, the scatter becomes directly proportional to the SDF if the effective autocorrelation length is set approximately to the surface or incident beam size. This formulation allows one to easily extra-polate the scatter component right down to the specular beam from measurements taken at relatively large angles." @default.
- W2080367188 created "2016-06-24" @default.
- W2080367188 creator A5037490250 @default.
- W2080367188 date "1989-04-05" @default.
- W2080367188 modified "2023-09-23" @default.
- W2080367188 title "A Consistent Theory Of Scatter From Optical Surfaces" @default.
- W2080367188 doi "https://doi.org/10.1117/12.948085" @default.
- W2080367188 hasPublicationYear "1989" @default.
- W2080367188 type Work @default.
- W2080367188 sameAs 2080367188 @default.
- W2080367188 citedByCount "1" @default.
- W2080367188 crossrefType "proceedings-article" @default.
- W2080367188 hasAuthorship W2080367188A5037490250 @default.
- W2080367188 hasConcept C102519508 @default.
- W2080367188 hasConcept C105795698 @default.
- W2080367188 hasConcept C107365816 @default.
- W2080367188 hasConcept C120665830 @default.
- W2080367188 hasConcept C121332964 @default.
- W2080367188 hasConcept C134306372 @default.
- W2080367188 hasConcept C159985019 @default.
- W2080367188 hasConcept C183223151 @default.
- W2080367188 hasConcept C192562407 @default.
- W2080367188 hasConcept C33923547 @default.
- W2080367188 hasConcept C5297727 @default.
- W2080367188 hasConcept C62520636 @default.
- W2080367188 hasConcept C6260449 @default.
- W2080367188 hasConcept C71039073 @default.
- W2080367188 hasConceptScore W2080367188C102519508 @default.
- W2080367188 hasConceptScore W2080367188C105795698 @default.
- W2080367188 hasConceptScore W2080367188C107365816 @default.
- W2080367188 hasConceptScore W2080367188C120665830 @default.
- W2080367188 hasConceptScore W2080367188C121332964 @default.
- W2080367188 hasConceptScore W2080367188C134306372 @default.
- W2080367188 hasConceptScore W2080367188C159985019 @default.
- W2080367188 hasConceptScore W2080367188C183223151 @default.
- W2080367188 hasConceptScore W2080367188C192562407 @default.
- W2080367188 hasConceptScore W2080367188C33923547 @default.
- W2080367188 hasConceptScore W2080367188C5297727 @default.
- W2080367188 hasConceptScore W2080367188C62520636 @default.
- W2080367188 hasConceptScore W2080367188C6260449 @default.
- W2080367188 hasConceptScore W2080367188C71039073 @default.
- W2080367188 hasLocation W20803671881 @default.
- W2080367188 hasOpenAccess W2080367188 @default.
- W2080367188 hasPrimaryLocation W20803671881 @default.
- W2080367188 hasRelatedWork W1672593227 @default.
- W2080367188 hasRelatedWork W2033254081 @default.
- W2080367188 hasRelatedWork W2055391716 @default.
- W2080367188 hasRelatedWork W2072794326 @default.
- W2080367188 hasRelatedWork W2081428624 @default.
- W2080367188 hasRelatedWork W2189655428 @default.
- W2080367188 hasRelatedWork W2209015667 @default.
- W2080367188 hasRelatedWork W2314684197 @default.
- W2080367188 hasRelatedWork W2524919187 @default.
- W2080367188 hasRelatedWork W2730744893 @default.
- W2080367188 hasRelatedWork W2962693750 @default.
- W2080367188 hasRelatedWork W2980142012 @default.
- W2080367188 hasRelatedWork W3021222228 @default.
- W2080367188 hasRelatedWork W3028798765 @default.
- W2080367188 hasRelatedWork W3028883077 @default.
- W2080367188 hasRelatedWork W3089134625 @default.
- W2080367188 hasRelatedWork W3158826484 @default.
- W2080367188 hasRelatedWork W3170028032 @default.
- W2080367188 hasRelatedWork W3199566928 @default.
- W2080367188 hasRelatedWork W2034078331 @default.
- W2080367188 isParatext "false" @default.
- W2080367188 isRetracted "false" @default.
- W2080367188 magId "2080367188" @default.
- W2080367188 workType "article" @default.