Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080396502> ?p ?o ?g. }
- W2080396502 endingPage "4277" @default.
- W2080396502 startingPage "4277" @default.
- W2080396502 abstract "Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics Richa Singh,1 Priyanka Wagh,1 Sweety Wadhwani,1 Sharvari Gaidhani,2 Avinash Kumbhar,3 Jayesh Bellare,4 Balu Ananda Chopade1 1Department of Microbiology, University of Pune, Pune, Maharashtra, India; 2Institute of Bioinformatics and Biotechnology, University of Pune, Pune, Maharashtra, India; 3Department of Chemistry, University of Pune, Pune, Maharashtra, India; 4Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India Background: The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity. Methods: Eighteen strains of Acinetobacter were screened for AgNP synthesis. AgNPs were characterized using various techniques. Reaction parameters were optimized, and their effect on the morphology of AgNPs was studied. The synergistic potential of AgNPs on 14 antibiotics against seven pathogens was determined by disc-diffusion, broth-microdilution, and minimum bactericidal concentration assays. The efficacy of AgNPs was evaluated as per the minimum inhibitory concentration (MIC) breakpoints of the Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Only A. calcoaceticus LRVP54 produced AgNPs within 24 hours. Monodisperse spherical nanoparticles of 8–12 nm were obtained with 0.7 mM silver nitrate at 70°C. During optimization, a blue-shift in ultraviolet-visible spectra was seen. X-ray diffraction data and lattice fringes (d =0.23 nm) observed under high-resolution transmission electron microscope confirmed the crystallinity of AgNPs. These AgNPs were found to be more effective against Gram-negative compared with Gram-positive microorganisms. Overall, AgNPs showed the highest synergy with vancomycin in the disc-diffusion assay. For Enterobacter aerogenes, a 3.8-fold increase in inhibition zone area was observed after the addition of AgNPs with vancomycin. Reduction in MIC and minimum bactericidal concentration was observed on exposure of AgNPs with antibiotics. Interestingly, multidrug-resistant A. baumannii was highly sensitized in the presence of AgNPs and became susceptible to antibiotics except cephalosporins. Similarly, the vancomycin-resistant strain of Streptococcus mutans was also found to be susceptible to antibiotic treatment when AgNPs were added. These biogenic AgNPs showed significant synergistic activity on the β-lactam class of antibiotics. Conclusion: This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard. Keywords: Ag nanoparticles, lattice fringes, disc-diffusion, minimum inhibitory concentration, synergistic activity" @default.
- W2080396502 created "2016-06-24" @default.
- W2080396502 creator A5006504421 @default.
- W2080396502 creator A5028464434 @default.
- W2080396502 creator A5045639401 @default.
- W2080396502 creator A5066710305 @default.
- W2080396502 creator A5074228111 @default.
- W2080396502 creator A5078973268 @default.
- W2080396502 creator A5090556241 @default.
- W2080396502 date "2013-11-01" @default.
- W2080396502 modified "2023-10-06" @default.
- W2080396502 title "Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics" @default.
- W2080396502 cites W1489768389 @default.
- W2080396502 cites W165184684 @default.
- W2080396502 cites W1912007726 @default.
- W2080396502 cites W1969451537 @default.
- W2080396502 cites W1971786076 @default.
- W2080396502 cites W1974203143 @default.
- W2080396502 cites W1981474525 @default.
- W2080396502 cites W1981589539 @default.
- W2080396502 cites W1986036429 @default.
- W2080396502 cites W1988787354 @default.
- W2080396502 cites W1995823206 @default.
- W2080396502 cites W1997118025 @default.
- W2080396502 cites W1998277110 @default.
- W2080396502 cites W2001809903 @default.
- W2080396502 cites W2005298071 @default.
- W2080396502 cites W2007430101 @default.
- W2080396502 cites W2012664765 @default.
- W2080396502 cites W2014081287 @default.
- W2080396502 cites W201490583 @default.
- W2080396502 cites W2014920011 @default.
- W2080396502 cites W2028375684 @default.
- W2080396502 cites W2030595004 @default.
- W2080396502 cites W2030620009 @default.
- W2080396502 cites W2034472897 @default.
- W2080396502 cites W2036636083 @default.
- W2080396502 cites W2038800275 @default.
- W2080396502 cites W2050339059 @default.
- W2080396502 cites W2053037334 @default.
- W2080396502 cites W2054543191 @default.
- W2080396502 cites W2057401975 @default.
- W2080396502 cites W2058408874 @default.
- W2080396502 cites W2061073363 @default.
- W2080396502 cites W2067308378 @default.
- W2080396502 cites W2068997948 @default.
- W2080396502 cites W2074285442 @default.
- W2080396502 cites W2078674132 @default.
- W2080396502 cites W2081327894 @default.
- W2080396502 cites W2085824935 @default.
- W2080396502 cites W2087310979 @default.
- W2080396502 cites W2093621244 @default.
- W2080396502 cites W2103123819 @default.
- W2080396502 cites W2107442396 @default.
- W2080396502 cites W2111510685 @default.
- W2080396502 cites W2117741300 @default.
- W2080396502 cites W2119699511 @default.
- W2080396502 cites W2134304198 @default.
- W2080396502 cites W2139221049 @default.
- W2080396502 cites W2148260760 @default.
- W2080396502 cites W2159074745 @default.
- W2080396502 cites W2160297926 @default.
- W2080396502 cites W2163817676 @default.
- W2080396502 cites W2187985252 @default.
- W2080396502 cites W2275434754 @default.
- W2080396502 cites W2427734505 @default.
- W2080396502 doi "https://doi.org/10.2147/ijn.s48913" @default.
- W2080396502 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3826770" @default.
- W2080396502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24235826" @default.
- W2080396502 hasPublicationYear "2013" @default.
- W2080396502 type Work @default.
- W2080396502 sameAs 2080396502 @default.
- W2080396502 citedByCount "103" @default.
- W2080396502 countsByYear W20803965022014 @default.
- W2080396502 countsByYear W20803965022015 @default.
- W2080396502 countsByYear W20803965022016 @default.
- W2080396502 countsByYear W20803965022017 @default.
- W2080396502 countsByYear W20803965022018 @default.
- W2080396502 countsByYear W20803965022019 @default.
- W2080396502 countsByYear W20803965022020 @default.
- W2080396502 countsByYear W20803965022021 @default.
- W2080396502 countsByYear W20803965022022 @default.
- W2080396502 countsByYear W20803965022023 @default.
- W2080396502 crossrefType "journal-article" @default.
- W2080396502 hasAuthorship W2080396502A5006504421 @default.
- W2080396502 hasAuthorship W2080396502A5028464434 @default.
- W2080396502 hasAuthorship W2080396502A5045639401 @default.
- W2080396502 hasAuthorship W2080396502A5066710305 @default.
- W2080396502 hasAuthorship W2080396502A5074228111 @default.
- W2080396502 hasAuthorship W2080396502A5078973268 @default.
- W2080396502 hasAuthorship W2080396502A5090556241 @default.
- W2080396502 hasBestOaLocation W20803965021 @default.
- W2080396502 hasConcept C13965031 @default.
- W2080396502 hasConcept C155672457 @default.
- W2080396502 hasConcept C171250308 @default.
- W2080396502 hasConcept C176947019 @default.
- W2080396502 hasConcept C185592680 @default.
- W2080396502 hasConcept C192562407 @default.