Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080431135> ?p ?o ?g. }
- W2080431135 endingPage "1199" @default.
- W2080431135 startingPage "1188" @default.
- W2080431135 abstract "In this paper, we study dictionary learning (DL) approach to identify the representation of low-dimensional subspaces from high-dimensional and nonnegative data. Such representation can be used to provide an affinity matrix among different subspaces for data clustering. The main contribution of this paper is to consider both nonnegativity and sparsity constraints together in DL such that data can be represented effectively by nonnegative and sparse coding coefficients and nonnegative dictionary bases. In the algorithm, we employ the proximal point technique for the resulting DL and sparsity optimization problem. We make use of coding coefficients to perform spectral clustering (SC) for data partitioning. Extensive experiments on real-world high-dimensional and nonnegative data sets, including text, microarray, and image data demonstrate that the proposed method can discover their subspace structures. Experimental results also show that our algorithm is computationally efficient and effective for obtaining high SC performance and interpreting the clustering results compared with the other testing methods." @default.
- W2080431135 created "2016-06-24" @default.
- W2080431135 creator A5010561682 @default.
- W2080431135 creator A5059443966 @default.
- W2080431135 creator A5069749738 @default.
- W2080431135 date "2013-08-01" @default.
- W2080431135 modified "2023-09-24" @default.
- W2080431135 title "Dictionary Learning-Based Subspace Structure Identification in Spectral Clustering" @default.
- W2080431135 cites W1727290854 @default.
- W2080431135 cites W1902027874 @default.
- W2080431135 cites W1998635907 @default.
- W2080431135 cites W2001141328 @default.
- W2080431135 cites W2003217181 @default.
- W2080431135 cites W2037549374 @default.
- W2080431135 cites W2053186076 @default.
- W2080431135 cites W2054954154 @default.
- W2080431135 cites W2074376560 @default.
- W2080431135 cites W2079361215 @default.
- W2080431135 cites W2082074261 @default.
- W2080431135 cites W2082639035 @default.
- W2080431135 cites W2087684630 @default.
- W2080431135 cites W2087962968 @default.
- W2080431135 cites W2099779699 @default.
- W2080431135 cites W2105431676 @default.
- W2080431135 cites W2109363337 @default.
- W2080431135 cites W2110096996 @default.
- W2080431135 cites W2110764733 @default.
- W2080431135 cites W2116216716 @default.
- W2080431135 cites W2121281940 @default.
- W2080431135 cites W2124696819 @default.
- W2080431135 cites W2125236599 @default.
- W2080431135 cites W2125874614 @default.
- W2080431135 cites W2132538571 @default.
- W2080431135 cites W2132914434 @default.
- W2080431135 cites W2140321362 @default.
- W2080431135 cites W2142584058 @default.
- W2080431135 cites W2142621404 @default.
- W2080431135 cites W2145152441 @default.
- W2080431135 cites W2147625498 @default.
- W2080431135 cites W2153663612 @default.
- W2080431135 cites W2157785665 @default.
- W2080431135 cites W2160547390 @default.
- W2080431135 cites W2163398148 @default.
- W2080431135 cites W2165685007 @default.
- W2080431135 cites W2167998037 @default.
- W2080431135 cites W2168561598 @default.
- W2080431135 cites W2177347332 @default.
- W2080431135 cites W2571268788 @default.
- W2080431135 cites W4250657332 @default.
- W2080431135 doi "https://doi.org/10.1109/tnnls.2013.2253123" @default.
- W2080431135 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808560" @default.
- W2080431135 hasPublicationYear "2013" @default.
- W2080431135 type Work @default.
- W2080431135 sameAs 2080431135 @default.
- W2080431135 citedByCount "23" @default.
- W2080431135 countsByYear W20804311352013 @default.
- W2080431135 countsByYear W20804311352014 @default.
- W2080431135 countsByYear W20804311352015 @default.
- W2080431135 countsByYear W20804311352016 @default.
- W2080431135 countsByYear W20804311352017 @default.
- W2080431135 countsByYear W20804311352018 @default.
- W2080431135 countsByYear W20804311352019 @default.
- W2080431135 countsByYear W20804311352020 @default.
- W2080431135 countsByYear W20804311352021 @default.
- W2080431135 countsByYear W20804311352022 @default.
- W2080431135 countsByYear W20804311352023 @default.
- W2080431135 crossrefType "journal-article" @default.
- W2080431135 hasAuthorship W2080431135A5010561682 @default.
- W2080431135 hasAuthorship W2080431135A5059443966 @default.
- W2080431135 hasAuthorship W2080431135A5069749738 @default.
- W2080431135 hasConcept C105611402 @default.
- W2080431135 hasConcept C105795698 @default.
- W2080431135 hasConcept C11413529 @default.
- W2080431135 hasConcept C12362212 @default.
- W2080431135 hasConcept C124066611 @default.
- W2080431135 hasConcept C153180895 @default.
- W2080431135 hasConcept C154771677 @default.
- W2080431135 hasConcept C154945302 @default.
- W2080431135 hasConcept C17744445 @default.
- W2080431135 hasConcept C179518139 @default.
- W2080431135 hasConcept C184509293 @default.
- W2080431135 hasConcept C199539241 @default.
- W2080431135 hasConcept C21080849 @default.
- W2080431135 hasConcept C2524010 @default.
- W2080431135 hasConcept C2776359362 @default.
- W2080431135 hasConcept C32834561 @default.
- W2080431135 hasConcept C33923547 @default.
- W2080431135 hasConcept C41008148 @default.
- W2080431135 hasConcept C73555534 @default.
- W2080431135 hasConcept C77637269 @default.
- W2080431135 hasConcept C94625758 @default.
- W2080431135 hasConceptScore W2080431135C105611402 @default.
- W2080431135 hasConceptScore W2080431135C105795698 @default.
- W2080431135 hasConceptScore W2080431135C11413529 @default.
- W2080431135 hasConceptScore W2080431135C12362212 @default.
- W2080431135 hasConceptScore W2080431135C124066611 @default.
- W2080431135 hasConceptScore W2080431135C153180895 @default.
- W2080431135 hasConceptScore W2080431135C154771677 @default.