Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080436064> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2080436064 endingPage "307" @default.
- W2080436064 startingPage "302" @default.
- W2080436064 abstract "Abstract Let ฯ: GโชGL(n, ๐ฝ) be a representation of a finite group G over the field ๐ฝ, and denote by V the vector space ๐ฝ n on which G acts via ฯ. By means of the dual (contragredient) representation G also acts on the symmetric algebra S(V*) of the vector space V* dual to V. Following [Citation10] we denote S(V*) by ๐ฝ[V] and regard it as the algebra of polynomial functionsFootnote 1 on V. The subalgebra of polynomials invariant under this action is denoted by ๐ฝ[V] G . If U โ V = ๐ฝ n is a linear subspace then the pointwise stabilizer of U is denoted by G U = {g โ G | g(u) = u โ u โ U}. It is known that several properties of ๐ฝ[V] G are inherited by ๐ฝ[V] G U (see, e.g., [Citation6] Section 10.6 and the references there). For finite fields, following the pioneering work of Dwyer and Wilkerson [Citation1], many such properties have been demonstrated using the T -functor introduced by Lannes [Citation4] (see also [Citation9]) in his study of unstable modules over the Steenrod algebra. In this note we show that given a degree bound for the generators of ๐ฝ[V] G as an algebra, this bound is inherited by ๐ฝ[V] G U when ๐ฝ = ๐ฝ q is a Galois field with q elements. To do so we examine some finiteness properties of unstable algebras over the Steenrod algebra and show that the T -functor preserves them, extending results in [Citation6] Section 10.2. 1Polynomial functions is meant in the sense of algebraic geometry: See e.g., [Citation10] ยง1.2 for a discussion of how elements of S(V*) can be regarded as polynomial functions from to the algebraic closure of ๐ฝ that are defined over ๐ฝ. So ๐ฝ[โ] is a contravariant functor of its argument. Key Words: Degree boundsLannes T-factorPointwise stabilizers2000 Mathematics Subject Classification: Primary 55S10Secondary 13A50 Notes 1Polynomial functions is meant in the sense of algebraic geometry: See e.g., [Citation10] ยง1.2 for a discussion of how elements of S(V*) can be regarded as polynomial functions from to the algebraic closure of ๐ฝ that are defined over ๐ฝ. So ๐ฝ[โ] is a contravariant functor of its argument. We write |ฮธ| for the degree of an element ฮธ of this basis. Communicated by M. Vigue." @default.
- W2080436064 created "2016-06-24" @default.
- W2080436064 creator A5074748391 @default.
- W2080436064 creator A5028944884 @default.
- W2080436064 date "2009-12-31" @default.
- W2080436064 modified "2023-10-08" @default.
- W2080436064 title "Lannes'<i>T</i>-Functor, Pointwise Stabilizers, and Degree Bounds" @default.
- W2080436064 cites W1496685491 @default.
- W2080436064 cites W1501747418 @default.
- W2080436064 cites W1554997814 @default.
- W2080436064 cites W1592390104 @default.
- W2080436064 cites W1966358396 @default.
- W2080436064 cites W2008916699 @default.
- W2080436064 cites W2045023532 @default.
- W2080436064 cites W2049234097 @default.
- W2080436064 doi "https://doi.org/10.1080/00927870903448732" @default.
- W2080436064 hasPublicationYear "2009" @default.
- W2080436064 type Work @default.
- W2080436064 sameAs 2080436064 @default.
- W2080436064 citedByCount "0" @default.
- W2080436064 crossrefType "journal-article" @default.
- W2080436064 hasAuthorship W2080436064A5028944884 @default.
- W2080436064 hasAuthorship W2080436064A5074748391 @default.
- W2080436064 hasConcept C112698675 @default.
- W2080436064 hasConcept C114614502 @default.
- W2080436064 hasConcept C118615104 @default.
- W2080436064 hasConcept C13336665 @default.
- W2080436064 hasConcept C134306372 @default.
- W2080436064 hasConcept C136119220 @default.
- W2080436064 hasConcept C144133560 @default.
- W2080436064 hasConcept C156772000 @default.
- W2080436064 hasConcept C202444582 @default.
- W2080436064 hasConcept C2777984123 @default.
- W2080436064 hasConcept C2780129039 @default.
- W2080436064 hasConcept C2781061749 @default.
- W2080436064 hasConcept C33923547 @default.
- W2080436064 hasConcept C67996461 @default.
- W2080436064 hasConcept C78606066 @default.
- W2080436064 hasConceptScore W2080436064C112698675 @default.
- W2080436064 hasConceptScore W2080436064C114614502 @default.
- W2080436064 hasConceptScore W2080436064C118615104 @default.
- W2080436064 hasConceptScore W2080436064C13336665 @default.
- W2080436064 hasConceptScore W2080436064C134306372 @default.
- W2080436064 hasConceptScore W2080436064C136119220 @default.
- W2080436064 hasConceptScore W2080436064C144133560 @default.
- W2080436064 hasConceptScore W2080436064C156772000 @default.
- W2080436064 hasConceptScore W2080436064C202444582 @default.
- W2080436064 hasConceptScore W2080436064C2777984123 @default.
- W2080436064 hasConceptScore W2080436064C2780129039 @default.
- W2080436064 hasConceptScore W2080436064C2781061749 @default.
- W2080436064 hasConceptScore W2080436064C33923547 @default.
- W2080436064 hasConceptScore W2080436064C67996461 @default.
- W2080436064 hasConceptScore W2080436064C78606066 @default.
- W2080436064 hasIssue "1" @default.
- W2080436064 hasLocation W20804360641 @default.
- W2080436064 hasOpenAccess W2080436064 @default.
- W2080436064 hasPrimaryLocation W20804360641 @default.
- W2080436064 hasRelatedWork W1981886746 @default.
- W2080436064 hasRelatedWork W1982080792 @default.
- W2080436064 hasRelatedWork W2040704823 @default.
- W2080436064 hasRelatedWork W2093181478 @default.
- W2080436064 hasRelatedWork W2095280859 @default.
- W2080436064 hasRelatedWork W2131764959 @default.
- W2080436064 hasRelatedWork W2900491746 @default.
- W2080436064 hasRelatedWork W2998365135 @default.
- W2080436064 hasRelatedWork W4229952419 @default.
- W2080436064 hasRelatedWork W4301270340 @default.
- W2080436064 hasVolume "38" @default.
- W2080436064 isParatext "false" @default.
- W2080436064 isRetracted "false" @default.
- W2080436064 magId "2080436064" @default.
- W2080436064 workType "article" @default.