Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080446023> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2080446023 endingPage "712" @default.
- W2080446023 startingPage "692" @default.
- W2080446023 abstract "Vandermonde matrices are well known. They have a number of interesting properties and play a role in (Lagrange) interpolation problems, partial fraction expansions, and finding solutions to linear ordinary differential equations, to mention just a few applications. Usually, one takes these matrices square, $qtimes q$ say, in which case the $i$-th column is given by $u(z_i)$, where we write $u(z)=(1,z,...,z^{q-1})^top$. If all the $z_i$ ($i=1,...,q$) are different, the Vandermonde matrix is non-singular, otherwise not. The latter case obviously takes place when all $z_i$ are the same, $z$ say, in which case one could speak of a confluent Vandermonde matrix. Non-singularity is obtained if one considers the matrix $V(z)$ whose $i$-th column ($i=1,...,q$) is given by the $(i-1)$-th derivative $u^{(i-1)}(z)^top$. We will consider generalizations of the confluent Vandermonde matrix $V(z)$ by considering matrices obtained by using as building blocks the matrices $M(z)=u(z)w(z)$, with $u(z)$ as above and $w(z)=(1,z,...,z^{r-1})$, together with its derivatives $M^{(k)}(z)$. Specifically, we will look at matrices whose $ij$-th block is given by $M^{(i+j)}(z)$, where the indices $i,j$ by convention have initial value zero. These in general non-square matrices exhibit a block-Hankel structure. We will answer a number of elementary questions for this matrix. What is the rank? What is the null-space? Can the latter be parametrized in a simple way? Does it depend on $z$? What are left or right inverses? It turns out that answers can be obtained by factorizing the matrix into a product of other matrix polynomials having a simple structure. The answers depend on the size of the matrix $M(z)$ and the number of derivatives $M^{(k)}(z)$ that is involved. The results are obtained by mostly elementary methods, no specific knowledge of the theory of matrix polynomials is needed." @default.
- W2080446023 created "2016-06-24" @default.
- W2080446023 creator A5018572164 @default.
- W2080446023 creator A5044437367 @default.
- W2080446023 date "2012-07-01" @default.
- W2080446023 modified "2023-09-30" @default.
- W2080446023 title "Transformed statistical distance measures and the fisher information matrix" @default.
- W2080446023 cites W1479979375 @default.
- W2080446023 cites W1482224246 @default.
- W2080446023 cites W1503304924 @default.
- W2080446023 cites W1520529885 @default.
- W2080446023 cites W1538005160 @default.
- W2080446023 cites W1551112541 @default.
- W2080446023 cites W1554050285 @default.
- W2080446023 cites W1555033159 @default.
- W2080446023 cites W1584835303 @default.
- W2080446023 cites W1973286042 @default.
- W2080446023 cites W1983870906 @default.
- W2080446023 cites W1994828768 @default.
- W2080446023 cites W1995696964 @default.
- W2080446023 cites W2008738328 @default.
- W2080446023 cites W2021370444 @default.
- W2080446023 cites W2063698478 @default.
- W2080446023 cites W2083423624 @default.
- W2080446023 cites W2083907094 @default.
- W2080446023 cites W2101006133 @default.
- W2080446023 cites W2108604527 @default.
- W2080446023 cites W2112440119 @default.
- W2080446023 cites W2123838014 @default.
- W2080446023 cites W2127696149 @default.
- W2080446023 cites W2128978199 @default.
- W2080446023 cites W2132470644 @default.
- W2080446023 cites W2140971281 @default.
- W2080446023 cites W2146988132 @default.
- W2080446023 cites W2148186131 @default.
- W2080446023 cites W2149082503 @default.
- W2080446023 cites W2149644180 @default.
- W2080446023 cites W2150080669 @default.
- W2080446023 cites W2167316000 @default.
- W2080446023 cites W2598995993 @default.
- W2080446023 cites W2610857016 @default.
- W2080446023 cites W2798909945 @default.
- W2080446023 cites W3143400115 @default.
- W2080446023 cites W3159077181 @default.
- W2080446023 doi "https://doi.org/10.1016/j.laa.2012.03.002" @default.
- W2080446023 hasPublicationYear "2012" @default.
- W2080446023 type Work @default.
- W2080446023 sameAs 2080446023 @default.
- W2080446023 citedByCount "2" @default.
- W2080446023 countsByYear W20804460232014 @default.
- W2080446023 countsByYear W20804460232015 @default.
- W2080446023 crossrefType "journal-article" @default.
- W2080446023 hasAuthorship W2080446023A5018572164 @default.
- W2080446023 hasAuthorship W2080446023A5044437367 @default.
- W2080446023 hasBestOaLocation W20804460231 @default.
- W2080446023 hasConcept C106487976 @default.
- W2080446023 hasConcept C109282560 @default.
- W2080446023 hasConcept C114614502 @default.
- W2080446023 hasConcept C121332964 @default.
- W2080446023 hasConcept C158693339 @default.
- W2080446023 hasConcept C159985019 @default.
- W2080446023 hasConcept C164226766 @default.
- W2080446023 hasConcept C192562407 @default.
- W2080446023 hasConcept C33923547 @default.
- W2080446023 hasConcept C55294529 @default.
- W2080446023 hasConcept C62520636 @default.
- W2080446023 hasConceptScore W2080446023C106487976 @default.
- W2080446023 hasConceptScore W2080446023C109282560 @default.
- W2080446023 hasConceptScore W2080446023C114614502 @default.
- W2080446023 hasConceptScore W2080446023C121332964 @default.
- W2080446023 hasConceptScore W2080446023C158693339 @default.
- W2080446023 hasConceptScore W2080446023C159985019 @default.
- W2080446023 hasConceptScore W2080446023C164226766 @default.
- W2080446023 hasConceptScore W2080446023C192562407 @default.
- W2080446023 hasConceptScore W2080446023C33923547 @default.
- W2080446023 hasConceptScore W2080446023C55294529 @default.
- W2080446023 hasConceptScore W2080446023C62520636 @default.
- W2080446023 hasIssue "2" @default.
- W2080446023 hasLocation W20804460231 @default.
- W2080446023 hasLocation W20804460232 @default.
- W2080446023 hasOpenAccess W2080446023 @default.
- W2080446023 hasPrimaryLocation W20804460231 @default.
- W2080446023 hasRelatedWork W1969577575 @default.
- W2080446023 hasRelatedWork W1988466901 @default.
- W2080446023 hasRelatedWork W2080446023 @default.
- W2080446023 hasRelatedWork W2690537872 @default.
- W2080446023 hasRelatedWork W2782846704 @default.
- W2080446023 hasRelatedWork W3184538210 @default.
- W2080446023 hasRelatedWork W3199374715 @default.
- W2080446023 hasRelatedWork W4289560224 @default.
- W2080446023 hasRelatedWork W4300458475 @default.
- W2080446023 hasRelatedWork W4309821383 @default.
- W2080446023 hasVolume "437" @default.
- W2080446023 isParatext "false" @default.
- W2080446023 isRetracted "false" @default.
- W2080446023 magId "2080446023" @default.
- W2080446023 workType "article" @default.