Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080452908> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2080452908 abstract "The generalized hankel-clifford transformations defined by F1(y) = (h1,α,βf) (y) = y-(α+β) ∫0∞ ℐj,β(xy)f(x) dx, with h1,α,β = h1,α,β·-1 = ∫0∞ (y/x)-(α+β)/2 Jα-β(2(√xy))f(x)dx and F2(y) = (h2α,β f) (y) = ∫0∞ x-(α+β) ℐα,β(xy)f (x)dx, with h2α,β = h2,α,β-1 = ∫0∞(x/y)-(α+β)/2 Jα-β(2√(xy))f(x)dx where ℐα,β(z) =z(α,β)/2 Jα-β(2√(z)), Jα-β(z) being the Bessel function of the first kind and order (α - β) ≥ -1/ 2 were extended by Malgonde [8] to certain generalized functions and by Malgonde and Bandewar [7] to certain generalized functions of slow growth through a generalization of mixed Parseval's equation as 〈h'1,α,β f,φ〉 = 〈f, h'2,α,βφ〉, where f ∈ H'α(I) and φ ∈ Hα(I). Note that by setting φ=h2,α,βΦ where Φ, h2,α,β Φ ∈ Hα (I). Analogously, we can define the distributional transformation h'2,α,β on H'β(I) as the adjoint of h'1,α,β on H'β(I) as. Thus equation takes the form 〈h'1,α,β f, h'2,α,βφ〉 = 〈f, Φ〉, where f ∈ H'α, Φ ∈ Hα and in this form equation appears as a generalization of the mixed Parseval equation ∫0∞ f(x)g(x)dx = ∫0∞ F1(y)G2(y)dy, where F1(y) = (h1,α,βf)(y) and g(x) = (h2,α,β-1 G2(y))(x), as it happens in the extension of the Hankel-Clifford transform to a certain spaces of generalized functions studied in Malgonde [8] and Mendez [5]. Letter, Malgonde [8] defined the distributional generalized Hankel-Clifford transformation of the conventional transformation (I) for complex y on Hα,β = Hα,β(σ) = ∪n=1∞ Hα,β,αn, where Hα,β,αn is the testing function space whick contains the kernel function, y-α-β(xy)(α+β)/2 Jα-β(2√(xy)). The distributional complex generalized -Hankel-Clifford transformation of the conventional generalized-Hankel-Clifford transformation (I) on Hα,β = Hα,β(σ) = ∪n=1∞ Hα,β,αn, where Hα,β is the testing space which contains the kernel function, y-α-β(xy)(α+β)/2 Jα-β(2√(xy)), is possible for equatuib (I) and (II) similar to Koh and Zemanian [2] and Malgonde and Lakshmi Gorty [9]. The distributional transformation was defined directly as the application of a generalized function to the kernel function, i.e., for f ∈ H'α,β, F'1(y) = (h'1,α,βf)(y) = 〈f(x),y-α-β(xy)(α+β)/2 Jα-β(2√(xy))〉. In this paper, we extend definition (IV) to a larger space of generalized functions. We first introduce the test function space Mα, a which contains the kernel function and show that Hα ⊂ Mα,a ⊂ Hα,β,a. We then form the countable union space Mα = ∪n=1∞ Mα,an whose dual M'α has H'α,β as a subsapce. Our main result is an inversion theorem states as follows. Let F'1 (y) = (h'1,α,β f)(y) = 〈f(x), y-α-β(xy)(α+β)/2 Jα-β (2√(xy))〉, f ∈ M'α where y is restrcited to the positive real axis. Let (α-β) ≥ -½. Then, in the sense of convergence in H'α, f(x) = limr→∞ ∫0∞ F'1(y) y-α-β ℐα,β(xy)dy. This convergence gives a stronger result than the one obtained by Malgonde [8]. Secondly, we prove that every generalized function belonging to M'α,a can be represented by a finite sum of derivatives of measurable functions. This proof is analogous to the method employed in structure theorems for Schwartz distributions [6] and similar to one by Koh [3]." @default.
- W2080452908 created "2016-06-24" @default.
- W2080452908 creator A5005209188 @default.
- W2080452908 creator A5027146409 @default.
- W2080452908 date "2013-01-01" @default.
- W2080452908 modified "2023-09-23" @default.
- W2080452908 title "The generalized Hankel-Clifford transformation on M′<inf>α</inf> and its representation" @default.
- W2080452908 cites W142859883 @default.
- W2080452908 cites W2070354216 @default.
- W2080452908 cites W2080938241 @default.
- W2080452908 cites W2146865130 @default.
- W2080452908 cites W2159995720 @default.
- W2080452908 doi "https://doi.org/10.1109/icadte.2013.6524712" @default.
- W2080452908 hasPublicationYear "2013" @default.
- W2080452908 type Work @default.
- W2080452908 sameAs 2080452908 @default.
- W2080452908 citedByCount "1" @default.
- W2080452908 countsByYear W20804529082015 @default.
- W2080452908 crossrefType "proceedings-article" @default.
- W2080452908 hasAuthorship W2080452908A5005209188 @default.
- W2080452908 hasAuthorship W2080452908A5027146409 @default.
- W2080452908 hasConcept C102519508 @default.
- W2080452908 hasConcept C104317684 @default.
- W2080452908 hasConcept C107706756 @default.
- W2080452908 hasConcept C114614502 @default.
- W2080452908 hasConcept C134306372 @default.
- W2080452908 hasConcept C177148314 @default.
- W2080452908 hasConcept C185592680 @default.
- W2080452908 hasConcept C203024314 @default.
- W2080452908 hasConcept C204241405 @default.
- W2080452908 hasConcept C33923547 @default.
- W2080452908 hasConcept C37914503 @default.
- W2080452908 hasConcept C55493867 @default.
- W2080452908 hasConcept C57640460 @default.
- W2080452908 hasConcept C76563020 @default.
- W2080452908 hasConcept C89451469 @default.
- W2080452908 hasConceptScore W2080452908C102519508 @default.
- W2080452908 hasConceptScore W2080452908C104317684 @default.
- W2080452908 hasConceptScore W2080452908C107706756 @default.
- W2080452908 hasConceptScore W2080452908C114614502 @default.
- W2080452908 hasConceptScore W2080452908C134306372 @default.
- W2080452908 hasConceptScore W2080452908C177148314 @default.
- W2080452908 hasConceptScore W2080452908C185592680 @default.
- W2080452908 hasConceptScore W2080452908C203024314 @default.
- W2080452908 hasConceptScore W2080452908C204241405 @default.
- W2080452908 hasConceptScore W2080452908C33923547 @default.
- W2080452908 hasConceptScore W2080452908C37914503 @default.
- W2080452908 hasConceptScore W2080452908C55493867 @default.
- W2080452908 hasConceptScore W2080452908C57640460 @default.
- W2080452908 hasConceptScore W2080452908C76563020 @default.
- W2080452908 hasConceptScore W2080452908C89451469 @default.
- W2080452908 hasLocation W20804529081 @default.
- W2080452908 hasOpenAccess W2080452908 @default.
- W2080452908 hasPrimaryLocation W20804529081 @default.
- W2080452908 hasRelatedWork W1532082000 @default.
- W2080452908 hasRelatedWork W1967219124 @default.
- W2080452908 hasRelatedWork W1973183440 @default.
- W2080452908 hasRelatedWork W1982382586 @default.
- W2080452908 hasRelatedWork W1989294404 @default.
- W2080452908 hasRelatedWork W2021416295 @default.
- W2080452908 hasRelatedWork W2077033412 @default.
- W2080452908 hasRelatedWork W2083562424 @default.
- W2080452908 hasRelatedWork W2140517298 @default.
- W2080452908 hasRelatedWork W2355571264 @default.
- W2080452908 hasRelatedWork W2547629257 @default.
- W2080452908 hasRelatedWork W2756541319 @default.
- W2080452908 hasRelatedWork W2808033973 @default.
- W2080452908 hasRelatedWork W2964221552 @default.
- W2080452908 hasRelatedWork W3001430137 @default.
- W2080452908 hasRelatedWork W3017631950 @default.
- W2080452908 hasRelatedWork W3098422168 @default.
- W2080452908 hasRelatedWork W3101131359 @default.
- W2080452908 hasRelatedWork W3204549188 @default.
- W2080452908 hasRelatedWork W1978607424 @default.
- W2080452908 isParatext "false" @default.
- W2080452908 isRetracted "false" @default.
- W2080452908 magId "2080452908" @default.
- W2080452908 workType "article" @default.