Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080456309> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2080456309 abstract "We consider random systems of equations over the reals, with $m$ equations and $m$ unknowns $P_i(t)+X_i(t)=0$, $tinmathbb{R}^m$, $i=1,...,m$, where the $P_i$'s are non-random polynomials having degrees $d_i$'s (the signal) and the $X_i$'s (the noise) are independent real-valued Gaussian centered random polynomial fields defined on $mathbb{R}^m$, with a probability law satisfying some invariance properties. For each $i$, $P_i$ and $X_i$ have degree $d_i$. The problem is the behavior of the number of roots for large $m$. We prove that under specified conditions on the relation signal over noise, which imply that in a certain sense this relation is neither too large nor too small, it follows that the quotient between the expected value of the number of roots of the perturbed system and the expected value corresponding to the centered system (i.e., $P_i$ identically zero for all $i=1,...,m$), tends to zero geometrically fast as $m$ tends to infinity. In particular, this means that the behavior of this expected value is governed by the noise part." @default.
- W2080456309 created "2016-06-24" @default.
- W2080456309 creator A5011083634 @default.
- W2080456309 creator A5013740188 @default.
- W2080456309 date "2009-02-01" @default.
- W2080456309 modified "2023-10-14" @default.
- W2080456309 title "Random systems of polynomial equations. The expected number of roots under smooth analysis" @default.
- W2080456309 cites W1976860429 @default.
- W2080456309 cites W2028491524 @default.
- W2080456309 cites W2085916021 @default.
- W2080456309 cites W2109519791 @default.
- W2080456309 cites W2146491975 @default.
- W2080456309 cites W2593708767 @default.
- W2080456309 cites W3121892946 @default.
- W2080456309 doi "https://doi.org/10.3150/08-bej149" @default.
- W2080456309 hasPublicationYear "2009" @default.
- W2080456309 type Work @default.
- W2080456309 sameAs 2080456309 @default.
- W2080456309 citedByCount "5" @default.
- W2080456309 countsByYear W20804563092014 @default.
- W2080456309 countsByYear W20804563092015 @default.
- W2080456309 countsByYear W20804563092016 @default.
- W2080456309 countsByYear W20804563092021 @default.
- W2080456309 crossrefType "journal-article" @default.
- W2080456309 hasAuthorship W2080456309A5011083634 @default.
- W2080456309 hasAuthorship W2080456309A5013740188 @default.
- W2080456309 hasBestOaLocation W20804563091 @default.
- W2080456309 hasConcept C134306372 @default.
- W2080456309 hasConcept C28826006 @default.
- W2080456309 hasConcept C33923547 @default.
- W2080456309 hasConcept C90119067 @default.
- W2080456309 hasConceptScore W2080456309C134306372 @default.
- W2080456309 hasConceptScore W2080456309C28826006 @default.
- W2080456309 hasConceptScore W2080456309C33923547 @default.
- W2080456309 hasConceptScore W2080456309C90119067 @default.
- W2080456309 hasIssue "1" @default.
- W2080456309 hasLocation W20804563091 @default.
- W2080456309 hasLocation W20804563092 @default.
- W2080456309 hasLocation W20804563093 @default.
- W2080456309 hasOpenAccess W2080456309 @default.
- W2080456309 hasPrimaryLocation W20804563091 @default.
- W2080456309 hasRelatedWork W1964907177 @default.
- W2080456309 hasRelatedWork W1989452890 @default.
- W2080456309 hasRelatedWork W2001919142 @default.
- W2080456309 hasRelatedWork W2013980822 @default.
- W2080456309 hasRelatedWork W2024384024 @default.
- W2080456309 hasRelatedWork W2031189705 @default.
- W2080456309 hasRelatedWork W2058821476 @default.
- W2080456309 hasRelatedWork W2065806852 @default.
- W2080456309 hasRelatedWork W3143358503 @default.
- W2080456309 hasRelatedWork W3165088360 @default.
- W2080456309 hasVolume "15" @default.
- W2080456309 isParatext "false" @default.
- W2080456309 isRetracted "false" @default.
- W2080456309 magId "2080456309" @default.
- W2080456309 workType "article" @default.