Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080460005> ?p ?o ?g. }
- W2080460005 endingPage "e69" @default.
- W2080460005 startingPage "e69" @default.
- W2080460005 abstract "To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes interact with one another, and with genetic and environmental factors, to determine clinical end points or disease phenotypes. Bayesian networks provide a convenient framework for extracting relationships from noisy data and are frequently applied to large-scale data to derive causal relationships among variables of interest. Given the complexity of molecular networks underlying common human disease traits, and the fact that biological networks can change depending on environmental conditions and genetic factors, large datasets, generally involving multiple perturbations (experiments), are required to reconstruct and reliably extract information from these networks. With limited resources, the balance of coverage of multiple perturbations and multiple subjects in a single perturbation needs to be considered in the experimental design. Increasing the number of experiments, or the number of subjects in an experiment, is an expensive and time-consuming way to improve network reconstruction. Integrating multiple types of data from existing subjects might be more efficient. For example, it has recently been demonstrated that combining genotypic and gene expression data in a segregating population leads to improved network reconstruction, which in turn may lead to better predictions of the effects of experimental perturbations on any given gene. Here we simulate data based on networks reconstructed from biological data collected in a segregating mouse population and quantify the improvement in network reconstruction achieved using genotypic and gene expression data, compared with reconstruction using gene expression data alone. We demonstrate that networks reconstructed using the combined genotypic and gene expression data achieve a level of reconstruction accuracy that exceeds networks reconstructed from expression data alone, and that fewer subjects may be required to achieve this superior reconstruction accuracy. We conclude that this integrative genomics approach to reconstructing networks not only leads to more predictive network models, but also may save time and money by decreasing the amount of data that must be generated under any given condition of interest to construct predictive network models." @default.
- W2080460005 created "2016-06-24" @default.
- W2080460005 creator A5007077635 @default.
- W2080460005 creator A5014183924 @default.
- W2080460005 creator A5020542626 @default.
- W2080460005 creator A5021432816 @default.
- W2080460005 creator A5058252518 @default.
- W2080460005 creator A5058745924 @default.
- W2080460005 creator A5071946434 @default.
- W2080460005 creator A5091462073 @default.
- W2080460005 date "2007-04-13" @default.
- W2080460005 modified "2023-09-29" @default.
- W2080460005 title "Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations" @default.
- W2080460005 cites W1835754911 @default.
- W2080460005 cites W1851422093 @default.
- W2080460005 cites W1853389192 @default.
- W2080460005 cites W1916564097 @default.
- W2080460005 cites W1966610596 @default.
- W2080460005 cites W1969296365 @default.
- W2080460005 cites W2001620484 @default.
- W2080460005 cites W2008395997 @default.
- W2080460005 cites W2008620264 @default.
- W2080460005 cites W2013196115 @default.
- W2080460005 cites W2041959263 @default.
- W2080460005 cites W2067245109 @default.
- W2080460005 cites W2073307618 @default.
- W2080460005 cites W2076372398 @default.
- W2080460005 cites W2087136216 @default.
- W2080460005 cites W2094248448 @default.
- W2080460005 cites W2100603120 @default.
- W2080460005 cites W2104768328 @default.
- W2080460005 cites W2108334325 @default.
- W2080460005 cites W2117007075 @default.
- W2080460005 cites W2118303980 @default.
- W2080460005 cites W2118308505 @default.
- W2080460005 cites W2130687290 @default.
- W2080460005 cites W2145068337 @default.
- W2080460005 cites W2146111996 @default.
- W2080460005 cites W2148860875 @default.
- W2080460005 cites W2149579404 @default.
- W2080460005 cites W2154201415 @default.
- W2080460005 cites W2154675483 @default.
- W2080460005 cites W2157523980 @default.
- W2080460005 cites W2161511352 @default.
- W2080460005 cites W2162765154 @default.
- W2080460005 cites W2163285329 @default.
- W2080460005 cites W2163813213 @default.
- W2080460005 cites W2168157678 @default.
- W2080460005 cites W2168175751 @default.
- W2080460005 cites W2171070506 @default.
- W2080460005 cites W2330192890 @default.
- W2080460005 cites W4256647194 @default.
- W2080460005 doi "https://doi.org/10.1371/journal.pcbi.0030069" @default.
- W2080460005 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1851982" @default.
- W2080460005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17432931" @default.
- W2080460005 hasPublicationYear "2007" @default.
- W2080460005 type Work @default.
- W2080460005 sameAs 2080460005 @default.
- W2080460005 citedByCount "190" @default.
- W2080460005 countsByYear W20804600052012 @default.
- W2080460005 countsByYear W20804600052013 @default.
- W2080460005 countsByYear W20804600052014 @default.
- W2080460005 countsByYear W20804600052015 @default.
- W2080460005 countsByYear W20804600052016 @default.
- W2080460005 countsByYear W20804600052017 @default.
- W2080460005 countsByYear W20804600052018 @default.
- W2080460005 countsByYear W20804600052019 @default.
- W2080460005 countsByYear W20804600052020 @default.
- W2080460005 countsByYear W20804600052021 @default.
- W2080460005 countsByYear W20804600052022 @default.
- W2080460005 countsByYear W20804600052023 @default.
- W2080460005 crossrefType "journal-article" @default.
- W2080460005 hasAuthorship W2080460005A5007077635 @default.
- W2080460005 hasAuthorship W2080460005A5014183924 @default.
- W2080460005 hasAuthorship W2080460005A5020542626 @default.
- W2080460005 hasAuthorship W2080460005A5021432816 @default.
- W2080460005 hasAuthorship W2080460005A5058252518 @default.
- W2080460005 hasAuthorship W2080460005A5058745924 @default.
- W2080460005 hasAuthorship W2080460005A5071946434 @default.
- W2080460005 hasAuthorship W2080460005A5091462073 @default.
- W2080460005 hasBestOaLocation W20804600051 @default.
- W2080460005 hasConcept C107673813 @default.
- W2080460005 hasConcept C119857082 @default.
- W2080460005 hasConcept C124101348 @default.
- W2080460005 hasConcept C144024400 @default.
- W2080460005 hasConcept C149923435 @default.
- W2080460005 hasConcept C154945302 @default.
- W2080460005 hasConcept C2908647359 @default.
- W2080460005 hasConcept C33724603 @default.
- W2080460005 hasConcept C41008148 @default.
- W2080460005 hasConcept C70721500 @default.
- W2080460005 hasConcept C86803240 @default.
- W2080460005 hasConcept C9357733 @default.
- W2080460005 hasConceptScore W2080460005C107673813 @default.
- W2080460005 hasConceptScore W2080460005C119857082 @default.
- W2080460005 hasConceptScore W2080460005C124101348 @default.
- W2080460005 hasConceptScore W2080460005C144024400 @default.
- W2080460005 hasConceptScore W2080460005C149923435 @default.