Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080474146> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2080474146 endingPage "763" @default.
- W2080474146 startingPage "745" @default.
- W2080474146 abstract "Knowledge of a truncated Fourier series expansion for a discontinuous <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 pi> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>2pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic function, or a truncated Chebyshev series expansion for a discontinuous nonperiodic function defined on the interval <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket negative 1 comma 1 right-bracket> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>[-1, 1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is used in this paper to accurately and efficiently reconstruct the corresponding discontinuous function. First an algebraic equation of degree <italic>M</italic> for the <italic>M</italic> locations of discontinuities in each period for a periodic function, or in the interval <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis negative 1 comma 1 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(-1, 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a nonperiodic function, is constructed. The <italic>M</italic> coefficients in that algebraic equation of degree <italic>M</italic> are obtained by solving a linear algebraic system of equations determined by the coefficients in the known truncated expansion. By solving an additional linear algebraic system for the <italic>M</italic> jumps of the function at the calculated discontinuity locations, we are able to reconstruct the discontinuous function as a linear combination of step functions and a continuous function." @default.
- W2080474146 created "2016-06-24" @default.
- W2080474146 creator A5077444901 @default.
- W2080474146 date "1993-01-01" @default.
- W2080474146 modified "2023-10-02" @default.
- W2080474146 title "Accurate and efficient reconstruction of discontinuous functions from truncated series expansions" @default.
- W2080474146 cites W133977063 @default.
- W2080474146 cites W1912930600 @default.
- W2080474146 cites W1967633238 @default.
- W2080474146 cites W1986982516 @default.
- W2080474146 cites W2085291729 @default.
- W2080474146 cites W2154990335 @default.
- W2080474146 cites W4232110500 @default.
- W2080474146 cites W4252109912 @default.
- W2080474146 cites W4298060601 @default.
- W2080474146 doi "https://doi.org/10.1090/s0025-5718-1993-1195430-1" @default.
- W2080474146 hasPublicationYear "1993" @default.
- W2080474146 type Work @default.
- W2080474146 sameAs 2080474146 @default.
- W2080474146 citedByCount "61" @default.
- W2080474146 countsByYear W20804741462012 @default.
- W2080474146 countsByYear W20804741462013 @default.
- W2080474146 countsByYear W20804741462014 @default.
- W2080474146 countsByYear W20804741462015 @default.
- W2080474146 countsByYear W20804741462016 @default.
- W2080474146 countsByYear W20804741462018 @default.
- W2080474146 countsByYear W20804741462019 @default.
- W2080474146 countsByYear W20804741462020 @default.
- W2080474146 countsByYear W20804741462021 @default.
- W2080474146 countsByYear W20804741462022 @default.
- W2080474146 countsByYear W20804741462023 @default.
- W2080474146 crossrefType "journal-article" @default.
- W2080474146 hasAuthorship W2080474146A5077444901 @default.
- W2080474146 hasBestOaLocation W20804741461 @default.
- W2080474146 hasConcept C11413529 @default.
- W2080474146 hasConcept C154945302 @default.
- W2080474146 hasConcept C33923547 @default.
- W2080474146 hasConcept C41008148 @default.
- W2080474146 hasConceptScore W2080474146C11413529 @default.
- W2080474146 hasConceptScore W2080474146C154945302 @default.
- W2080474146 hasConceptScore W2080474146C33923547 @default.
- W2080474146 hasConceptScore W2080474146C41008148 @default.
- W2080474146 hasIssue "204" @default.
- W2080474146 hasLocation W20804741461 @default.
- W2080474146 hasOpenAccess W2080474146 @default.
- W2080474146 hasPrimaryLocation W20804741461 @default.
- W2080474146 hasRelatedWork W1979597421 @default.
- W2080474146 hasRelatedWork W2007980826 @default.
- W2080474146 hasRelatedWork W2061531152 @default.
- W2080474146 hasRelatedWork W2077600819 @default.
- W2080474146 hasRelatedWork W2386767533 @default.
- W2080474146 hasRelatedWork W2748952813 @default.
- W2080474146 hasRelatedWork W2899084033 @default.
- W2080474146 hasRelatedWork W3002753104 @default.
- W2080474146 hasRelatedWork W4225152035 @default.
- W2080474146 hasRelatedWork W4245490552 @default.
- W2080474146 hasVolume "61" @default.
- W2080474146 isParatext "false" @default.
- W2080474146 isRetracted "false" @default.
- W2080474146 magId "2080474146" @default.
- W2080474146 workType "article" @default.