Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080474856> ?p ?o ?g. }
- W2080474856 endingPage "88" @default.
- W2080474856 startingPage "77" @default.
- W2080474856 abstract "Multiple time step (MTS) algorithms present an effective integration approach to reduce the computational cost of dynamics simulations. By using force splitting to allow larger time steps for the more slowly varying force components, computational savings can be realized. The Particle-Mesh-Ewald (PME) method has been independently devised to provide an effective and efficient treatment of the long-range electrostatics interactions. Here we examine the performance of a combined MTS/PME algorithm previously developed for AMBER on a large polymerase beta/DNA complex containing 40,673 atoms. Our goal is to carefully combine the robust features of the Langevin/MTS (LN) methodology implemented in CHARMM-which uses position rather than velocity Verlet with stochasticity to make possible outer time steps of 150 fs-with the PME formulation. The developed MTS/PME integrator removes fast terms from the reciprocal-space Ewald component by using switch functions. We analyze the advantages and limitations of the resulting scheme by comparing performance to the single time step leapfrog Verlet integrator currently used in AMBER by evaluating different time-step protocols using three assessors for accuracy, speedup, and stability, all applied to long (i.e., nanosecond) simulations to ensure proper energy conservation. We also examine the performance of the algorithm on a parallel, distributed shared-memory computer (SGI Origin 2000 with 8 300-MHz R12000 processors). Good energy conservation and stability behavior can be demonstrated, for Newtonian protocols with outer time steps of up to 8 fs and Langevin protocols with outer time steps of up to 16 fs. Still, we emphasize the inherent limitations imposed by the incorporation of MTS methods into the PME formulation that may not be widely appreciated. Namely, the limiting factor on the largest outer time-step size, and hence speedup, is an intramolecular cancellation error inherent to PME. This error stems from the excluded-nonbonded correction term contained in the reciprocal-space component. This cancellation error varies in time and introduces artificial frequencies to the governing dynamics motion. Unfortunately, we find that this numerical PME error cannot be easily eliminated by refining the PME parameters (grid resolution and/or order of interpolating polynomial). We suggest that methods other than PME for fast electrostatics may allow users to reap the full advantages from MTS algorithms." @default.
- W2080474856 created "2016-06-24" @default.
- W2080474856 creator A5000359310 @default.
- W2080474856 creator A5030780920 @default.
- W2080474856 creator A5033583960 @default.
- W2080474856 creator A5046513501 @default.
- W2080474856 date "2002-12-06" @default.
- W2080474856 modified "2023-10-08" @default.
- W2080474856 title "Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms" @default.
- W2080474856 cites W1977083651 @default.
- W2080474856 cites W1991939674 @default.
- W2080474856 cites W2005386550 @default.
- W2080474856 cites W2005442221 @default.
- W2080474856 cites W2006274376 @default.
- W2080474856 cites W2015623296 @default.
- W2080474856 cites W2017835622 @default.
- W2080474856 cites W2019536189 @default.
- W2080474856 cites W2020036580 @default.
- W2080474856 cites W2021002797 @default.
- W2080474856 cites W2025276235 @default.
- W2080474856 cites W2032785002 @default.
- W2080474856 cites W2035621643 @default.
- W2080474856 cites W2035687084 @default.
- W2080474856 cites W2039425860 @default.
- W2080474856 cites W2041380982 @default.
- W2080474856 cites W2051352867 @default.
- W2080474856 cites W2057494243 @default.
- W2080474856 cites W2058479011 @default.
- W2080474856 cites W2062019978 @default.
- W2080474856 cites W2067174909 @default.
- W2080474856 cites W2075760680 @default.
- W2080474856 cites W2081407528 @default.
- W2080474856 cites W2083206954 @default.
- W2080474856 cites W2085373032 @default.
- W2080474856 cites W2091731899 @default.
- W2080474856 cites W2093381148 @default.
- W2080474856 cites W2095025461 @default.
- W2080474856 cites W2103815459 @default.
- W2080474856 cites W2104090745 @default.
- W2080474856 cites W2104766043 @default.
- W2080474856 cites W2109539263 @default.
- W2080474856 cites W2111609734 @default.
- W2080474856 cites W2111906305 @default.
- W2080474856 cites W2117563175 @default.
- W2080474856 cites W2121432651 @default.
- W2080474856 cites W2123712613 @default.
- W2080474856 cites W2127341056 @default.
- W2080474856 cites W2137007076 @default.
- W2080474856 cites W2151317657 @default.
- W2080474856 cites W2166278492 @default.
- W2080474856 cites W2250687410 @default.
- W2080474856 cites W2323178299 @default.
- W2080474856 cites W242446277 @default.
- W2080474856 cites W2501078658 @default.
- W2080474856 cites W2905826917 @default.
- W2080474856 cites W4299790875 @default.
- W2080474856 doi "https://doi.org/10.1002/jcc.10196" @default.
- W2080474856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12483677" @default.
- W2080474856 hasPublicationYear "2002" @default.
- W2080474856 type Work @default.
- W2080474856 sameAs 2080474856 @default.
- W2080474856 citedByCount "30" @default.
- W2080474856 countsByYear W20804748562013 @default.
- W2080474856 countsByYear W20804748562015 @default.
- W2080474856 countsByYear W20804748562016 @default.
- W2080474856 countsByYear W20804748562017 @default.
- W2080474856 countsByYear W20804748562019 @default.
- W2080474856 countsByYear W20804748562022 @default.
- W2080474856 countsByYear W20804748562023 @default.
- W2080474856 crossrefType "journal-article" @default.
- W2080474856 hasAuthorship W2080474856A5000359310 @default.
- W2080474856 hasAuthorship W2080474856A5030780920 @default.
- W2080474856 hasAuthorship W2080474856A5033583960 @default.
- W2080474856 hasAuthorship W2080474856A5046513501 @default.
- W2080474856 hasConcept C10138342 @default.
- W2080474856 hasConcept C112972136 @default.
- W2080474856 hasConcept C11413529 @default.
- W2080474856 hasConcept C119857082 @default.
- W2080474856 hasConcept C121332964 @default.
- W2080474856 hasConcept C121864883 @default.
- W2080474856 hasConcept C143551052 @default.
- W2080474856 hasConcept C147597530 @default.
- W2080474856 hasConcept C162324750 @default.
- W2080474856 hasConcept C173608175 @default.
- W2080474856 hasConcept C185592680 @default.
- W2080474856 hasConcept C198082294 @default.
- W2080474856 hasConcept C2776257435 @default.
- W2080474856 hasConcept C2780004032 @default.
- W2080474856 hasConcept C31258907 @default.
- W2080474856 hasConcept C41008148 @default.
- W2080474856 hasConcept C45600393 @default.
- W2080474856 hasConcept C459310 @default.
- W2080474856 hasConcept C59593255 @default.
- W2080474856 hasConcept C68339613 @default.
- W2080474856 hasConcept C79518650 @default.
- W2080474856 hasConceptScore W2080474856C10138342 @default.
- W2080474856 hasConceptScore W2080474856C112972136 @default.
- W2080474856 hasConceptScore W2080474856C11413529 @default.