Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080490736> ?p ?o ?g. }
- W2080490736 endingPage "94" @default.
- W2080490736 startingPage "82" @default.
- W2080490736 abstract "Industry statistics indicate that technology-learning rates can dramatically reduce both feedstock and biofuel production costs. Both the Brazilian sugarcane ethanol and the United States corn ethanol industries exhibit drastic historical cost reductions that can be attributed to learning factors. Thus, the purpose of this paper is to estimate the potential impact of industry learning rates on the emerging advanced biofuel industry in the United States. Results from this study indicate that increasing biorefinery capital and feedstock learning rates could significantly reduce the optimal size and production costs of biorefineries. This analysis compares predictions of learning-based economies of scale, S-Curve, and Stanford-B models. The Stanford-B model predicts biofuel cost reductions of 55 to 73% compared to base case estimates. For example, optimal costs for Fischer-Tropsch diesel decrease from $4.42/gallon to $2.00/gallon. The optimal capacities range from small-scale (grain ethanol and fast pyrolysis) producing 16 million gallons per year to large-scale gasification facilities with 210 million gallons per year capacity. Sensitivity analysis shows that improving capital and feedstock delivery learning rates has a stronger impact on reducing costs than increasing industry experience suggesting that there is an economic incentive to invest in strategies that increase the learning rate for advanced biofuel production. © 2014 Society of Chemical Industry and John Wiley & Sons, Ltd" @default.
- W2080490736 created "2016-06-24" @default.
- W2080490736 creator A5013612482 @default.
- W2080490736 creator A5026791771 @default.
- W2080490736 creator A5032583997 @default.
- W2080490736 creator A5088625555 @default.
- W2080490736 creator A5090563471 @default.
- W2080490736 date "2014-07-24" @default.
- W2080490736 modified "2023-09-25" @default.
- W2080490736 title "Learning rates and their impacts on the optimal capacities and production costs of biorefineries" @default.
- W2080490736 cites W1547647885 @default.
- W2080490736 cites W1966248760 @default.
- W2080490736 cites W1971653765 @default.
- W2080490736 cites W1976522141 @default.
- W2080490736 cites W1980650456 @default.
- W2080490736 cites W1982532752 @default.
- W2080490736 cites W1984835844 @default.
- W2080490736 cites W1991975309 @default.
- W2080490736 cites W2004776672 @default.
- W2080490736 cites W2005606269 @default.
- W2080490736 cites W2018432624 @default.
- W2080490736 cites W2020242758 @default.
- W2080490736 cites W2022930690 @default.
- W2080490736 cites W2025036286 @default.
- W2080490736 cites W2043341700 @default.
- W2080490736 cites W2051373184 @default.
- W2080490736 cites W2055619027 @default.
- W2080490736 cites W2059409892 @default.
- W2080490736 cites W2069102272 @default.
- W2080490736 cites W2070100339 @default.
- W2080490736 cites W2075404127 @default.
- W2080490736 cites W2078509431 @default.
- W2080490736 cites W2080715303 @default.
- W2080490736 cites W2082721289 @default.
- W2080490736 cites W2084552861 @default.
- W2080490736 cites W2086243915 @default.
- W2080490736 cites W2088955582 @default.
- W2080490736 cites W2117969321 @default.
- W2080490736 cites W2151527305 @default.
- W2080490736 cites W3122136784 @default.
- W2080490736 cites W3122162585 @default.
- W2080490736 cites W3289898 @default.
- W2080490736 cites W4233549818 @default.
- W2080490736 doi "https://doi.org/10.1002/bbb.1513" @default.
- W2080490736 hasPublicationYear "2014" @default.
- W2080490736 type Work @default.
- W2080490736 sameAs 2080490736 @default.
- W2080490736 citedByCount "29" @default.
- W2080490736 countsByYear W20804907362015 @default.
- W2080490736 countsByYear W20804907362016 @default.
- W2080490736 countsByYear W20804907362017 @default.
- W2080490736 countsByYear W20804907362018 @default.
- W2080490736 countsByYear W20804907362019 @default.
- W2080490736 countsByYear W20804907362020 @default.
- W2080490736 countsByYear W20804907362021 @default.
- W2080490736 countsByYear W20804907362022 @default.
- W2080490736 countsByYear W20804907362023 @default.
- W2080490736 crossrefType "journal-article" @default.
- W2080490736 hasAuthorship W2080490736A5013612482 @default.
- W2080490736 hasAuthorship W2080490736A5026791771 @default.
- W2080490736 hasAuthorship W2080490736A5032583997 @default.
- W2080490736 hasAuthorship W2080490736A5088625555 @default.
- W2080490736 hasAuthorship W2080490736A5090563471 @default.
- W2080490736 hasConcept C127413603 @default.
- W2080490736 hasConcept C139719470 @default.
- W2080490736 hasConcept C157062255 @default.
- W2080490736 hasConcept C162324750 @default.
- W2080490736 hasConcept C175444787 @default.
- W2080490736 hasConcept C175605778 @default.
- W2080490736 hasConcept C178790620 @default.
- W2080490736 hasConcept C185592680 @default.
- W2080490736 hasConcept C206139338 @default.
- W2080490736 hasConcept C21339974 @default.
- W2080490736 hasConcept C2778348673 @default.
- W2080490736 hasConcept C2780301381 @default.
- W2080490736 hasConcept C29122968 @default.
- W2080490736 hasConcept C29321873 @default.
- W2080490736 hasConcept C39432304 @default.
- W2080490736 hasConcept C48824518 @default.
- W2080490736 hasConcept C53991642 @default.
- W2080490736 hasConcept C548081761 @default.
- W2080490736 hasConcept C65183824 @default.
- W2080490736 hasConceptScore W2080490736C127413603 @default.
- W2080490736 hasConceptScore W2080490736C139719470 @default.
- W2080490736 hasConceptScore W2080490736C157062255 @default.
- W2080490736 hasConceptScore W2080490736C162324750 @default.
- W2080490736 hasConceptScore W2080490736C175444787 @default.
- W2080490736 hasConceptScore W2080490736C175605778 @default.
- W2080490736 hasConceptScore W2080490736C178790620 @default.
- W2080490736 hasConceptScore W2080490736C185592680 @default.
- W2080490736 hasConceptScore W2080490736C206139338 @default.
- W2080490736 hasConceptScore W2080490736C21339974 @default.
- W2080490736 hasConceptScore W2080490736C2778348673 @default.
- W2080490736 hasConceptScore W2080490736C2780301381 @default.
- W2080490736 hasConceptScore W2080490736C29122968 @default.
- W2080490736 hasConceptScore W2080490736C29321873 @default.
- W2080490736 hasConceptScore W2080490736C39432304 @default.
- W2080490736 hasConceptScore W2080490736C48824518 @default.