Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080521213> ?p ?o ?g. }
- W2080521213 endingPage "283" @default.
- W2080521213 startingPage "277" @default.
- W2080521213 abstract "In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the existing problems in other conventional techniques for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the number of Gaussian components. The discriminative splitting idea is employed for Gaussian mixture densities followed by learning via the introduced method. Then, the GMM classifier was applied to distinguish between healthy infants and those that present a selected set of medical conditions. Each group includes both full-term and premature infants. Cry-pattern for each pathological condition is created by using the adapted BML method and 13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate that the introduced method for training GMMs has a better performance than the traditional method based upon random splitting and EM-based re-estimation as a reference system in multi-pathological classification task." @default.
- W2080521213 created "2016-06-24" @default.
- W2080521213 creator A5035572451 @default.
- W2080521213 creator A5058606862 @default.
- W2080521213 date "2013-01-01" @default.
- W2080521213 modified "2023-10-01" @default.
- W2080521213 title "Splitting of Gaussian Models via Adapted BML Method Pertaining to Cry-Based Diagnostic System" @default.
- W2080521213 cites W127563732 @default.
- W2080521213 cites W1493163583 @default.
- W2080521213 cites W1509969431 @default.
- W2080521213 cites W1524395826 @default.
- W2080521213 cites W1570060426 @default.
- W2080521213 cites W1578856370 @default.
- W2080521213 cites W1663973292 @default.
- W2080521213 cites W1844397772 @default.
- W2080521213 cites W1967429593 @default.
- W2080521213 cites W1969107787 @default.
- W2080521213 cites W1971190036 @default.
- W2080521213 cites W1974963687 @default.
- W2080521213 cites W1988662502 @default.
- W2080521213 cites W1988790447 @default.
- W2080521213 cites W1995053025 @default.
- W2080521213 cites W2017969645 @default.
- W2080521213 cites W2049633694 @default.
- W2080521213 cites W2069501481 @default.
- W2080521213 cites W2099732049 @default.
- W2080521213 cites W2100966557 @default.
- W2080521213 cites W2103075368 @default.
- W2080521213 cites W2118209063 @default.
- W2080521213 cites W2126571330 @default.
- W2080521213 cites W2146792286 @default.
- W2080521213 cites W2152761983 @default.
- W2080521213 cites W2165880886 @default.
- W2080521213 cites W2166175192 @default.
- W2080521213 cites W2168175751 @default.
- W2080521213 cites W2168961642 @default.
- W2080521213 cites W2595741664 @default.
- W2080521213 cites W2752932982 @default.
- W2080521213 cites W2799061466 @default.
- W2080521213 cites W368210312 @default.
- W2080521213 cites W70249898 @default.
- W2080521213 cites W782518471 @default.
- W2080521213 cites W1576609312 @default.
- W2080521213 cites W1579430631 @default.
- W2080521213 cites W26277909 @default.
- W2080521213 doi "https://doi.org/10.4236/eng.2013.510b058" @default.
- W2080521213 hasPublicationYear "2013" @default.
- W2080521213 type Work @default.
- W2080521213 sameAs 2080521213 @default.
- W2080521213 citedByCount "3" @default.
- W2080521213 countsByYear W20805212132016 @default.
- W2080521213 countsByYear W20805212132018 @default.
- W2080521213 crossrefType "journal-article" @default.
- W2080521213 hasAuthorship W2080521213A5035572451 @default.
- W2080521213 hasAuthorship W2080521213A5058606862 @default.
- W2080521213 hasBestOaLocation W20805212131 @default.
- W2080521213 hasConcept C119857082 @default.
- W2080521213 hasConcept C121332964 @default.
- W2080521213 hasConcept C151989614 @default.
- W2080521213 hasConcept C153180895 @default.
- W2080521213 hasConcept C154945302 @default.
- W2080521213 hasConcept C163716315 @default.
- W2080521213 hasConcept C28490314 @default.
- W2080521213 hasConcept C41008148 @default.
- W2080521213 hasConcept C52622490 @default.
- W2080521213 hasConcept C61224824 @default.
- W2080521213 hasConcept C62520636 @default.
- W2080521213 hasConcept C83665646 @default.
- W2080521213 hasConcept C95623464 @default.
- W2080521213 hasConcept C97931131 @default.
- W2080521213 hasConceptScore W2080521213C119857082 @default.
- W2080521213 hasConceptScore W2080521213C121332964 @default.
- W2080521213 hasConceptScore W2080521213C151989614 @default.
- W2080521213 hasConceptScore W2080521213C153180895 @default.
- W2080521213 hasConceptScore W2080521213C154945302 @default.
- W2080521213 hasConceptScore W2080521213C163716315 @default.
- W2080521213 hasConceptScore W2080521213C28490314 @default.
- W2080521213 hasConceptScore W2080521213C41008148 @default.
- W2080521213 hasConceptScore W2080521213C52622490 @default.
- W2080521213 hasConceptScore W2080521213C61224824 @default.
- W2080521213 hasConceptScore W2080521213C62520636 @default.
- W2080521213 hasConceptScore W2080521213C83665646 @default.
- W2080521213 hasConceptScore W2080521213C95623464 @default.
- W2080521213 hasConceptScore W2080521213C97931131 @default.
- W2080521213 hasIssue "10" @default.
- W2080521213 hasLocation W20805212131 @default.
- W2080521213 hasOpenAccess W2080521213 @default.
- W2080521213 hasPrimaryLocation W20805212131 @default.
- W2080521213 hasRelatedWork W1461621550 @default.
- W2080521213 hasRelatedWork W1994222119 @default.
- W2080521213 hasRelatedWork W2020350089 @default.
- W2080521213 hasRelatedWork W2112343299 @default.
- W2080521213 hasRelatedWork W2143784992 @default.
- W2080521213 hasRelatedWork W2311479510 @default.
- W2080521213 hasRelatedWork W2546426011 @default.
- W2080521213 hasRelatedWork W2773500201 @default.
- W2080521213 hasRelatedWork W2905846897 @default.
- W2080521213 hasRelatedWork W62482549 @default.