Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080562952> ?p ?o ?g. }
- W2080562952 endingPage "148" @default.
- W2080562952 startingPage "138" @default.
- W2080562952 abstract "Abstract Knowledge discovery in database and data mining (DM) have emerged as high profile, rapidly evolving, urgently needed, and highly practical approaches to use dissolved gas analysis (DGA) data to monitor conditions and faults in oil‐immersed power transformers. This study reviews different DM approaches to oil‐immersed power transformer maintenance by discussing historical developments and presenting state‐of‐the‐art DM methods. Relevant publications covering a broad range of artificial intelligence methods are reviewed. Current approaches to the latter method are discussed in the field of DM for oil‐immersed power transformers. In this paper, various DM approaches are discussed, including expert systems, fuzzy logic, neural networks, classification and decision, and hybrid intelligent‐based diagnostic systems that apply the DGA database. © 2012 Wiley Periodicals, Inc. This article is categorized under: Application Areas > Industry Specific Applications" @default.
- W2080562952 created "2016-06-24" @default.
- W2080562952 creator A5083615677 @default.
- W2080562952 creator A5086898143 @default.
- W2080562952 creator A5090646864 @default.
- W2080562952 date "2012-01-10" @default.
- W2080562952 modified "2023-10-02" @default.
- W2080562952 title "Data mining for oil‐insulated power transformers: an advanced literature survey" @default.
- W2080562952 cites W1506990158 @default.
- W2080562952 cites W1527774399 @default.
- W2080562952 cites W1597860663 @default.
- W2080562952 cites W1968530169 @default.
- W2080562952 cites W1970507875 @default.
- W2080562952 cites W1976565771 @default.
- W2080562952 cites W1979382152 @default.
- W2080562952 cites W1980280332 @default.
- W2080562952 cites W1982576552 @default.
- W2080562952 cites W1984681681 @default.
- W2080562952 cites W1989356191 @default.
- W2080562952 cites W1990011917 @default.
- W2080562952 cites W1992369683 @default.
- W2080562952 cites W2012608140 @default.
- W2080562952 cites W2021009631 @default.
- W2080562952 cites W2028193856 @default.
- W2080562952 cites W2028916149 @default.
- W2080562952 cites W2039973395 @default.
- W2080562952 cites W2048251718 @default.
- W2080562952 cites W2050873240 @default.
- W2080562952 cites W2067248431 @default.
- W2080562952 cites W2082188479 @default.
- W2080562952 cites W2084277209 @default.
- W2080562952 cites W2084741531 @default.
- W2080562952 cites W2084880510 @default.
- W2080562952 cites W2087643252 @default.
- W2080562952 cites W2095980522 @default.
- W2080562952 cites W2096801799 @default.
- W2080562952 cites W2100389565 @default.
- W2080562952 cites W2101626336 @default.
- W2080562952 cites W2102321334 @default.
- W2080562952 cites W2107116457 @default.
- W2080562952 cites W2107831555 @default.
- W2080562952 cites W2109621301 @default.
- W2080562952 cites W2112547574 @default.
- W2080562952 cites W2114487106 @default.
- W2080562952 cites W2117078830 @default.
- W2080562952 cites W2123958476 @default.
- W2080562952 cites W2126749794 @default.
- W2080562952 cites W2126857563 @default.
- W2080562952 cites W2127761407 @default.
- W2080562952 cites W2129399862 @default.
- W2080562952 cites W2134815257 @default.
- W2080562952 cites W2134890699 @default.
- W2080562952 cites W2136031731 @default.
- W2080562952 cites W2138825343 @default.
- W2080562952 cites W2140417752 @default.
- W2080562952 cites W2140892240 @default.
- W2080562952 cites W2141219622 @default.
- W2080562952 cites W2148714802 @default.
- W2080562952 cites W2149300845 @default.
- W2080562952 cites W2152526563 @default.
- W2080562952 cites W2153375913 @default.
- W2080562952 cites W2153846944 @default.
- W2080562952 cites W2158969303 @default.
- W2080562952 cites W2160554740 @default.
- W2080562952 cites W2163147917 @default.
- W2080562952 cites W2163214087 @default.
- W2080562952 cites W2164877242 @default.
- W2080562952 cites W2165956668 @default.
- W2080562952 cites W2167967623 @default.
- W2080562952 cites W2169898406 @default.
- W2080562952 cites W2170559427 @default.
- W2080562952 cites W2373744349 @default.
- W2080562952 cites W4240726130 @default.
- W2080562952 cites W4240924624 @default.
- W2080562952 cites W4248342355 @default.
- W2080562952 cites W61267734 @default.
- W2080562952 cites W2045483004 @default.
- W2080562952 doi "https://doi.org/10.1002/widm.1043" @default.
- W2080562952 hasPublicationYear "2012" @default.
- W2080562952 type Work @default.
- W2080562952 sameAs 2080562952 @default.
- W2080562952 citedByCount "6" @default.
- W2080562952 countsByYear W20805629522013 @default.
- W2080562952 countsByYear W20805629522016 @default.
- W2080562952 countsByYear W20805629522018 @default.
- W2080562952 countsByYear W20805629522021 @default.
- W2080562952 countsByYear W20805629522022 @default.
- W2080562952 crossrefType "journal-article" @default.
- W2080562952 hasAuthorship W2080562952A5083615677 @default.
- W2080562952 hasAuthorship W2080562952A5086898143 @default.
- W2080562952 hasAuthorship W2080562952A5090646864 @default.
- W2080562952 hasBestOaLocation W20805629521 @default.
- W2080562952 hasConcept C119599485 @default.
- W2080562952 hasConcept C124101348 @default.
- W2080562952 hasConcept C127413603 @default.
- W2080562952 hasConcept C154945302 @default.
- W2080562952 hasConcept C165801399 @default.
- W2080562952 hasConcept C181335627 @default.