Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080565523> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2080565523 endingPage "7" @default.
- W2080565523 startingPage "1" @default.
- W2080565523 abstract "We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs), Artificial Neural Networks (ANNs), Fuzzy Expert Systems (FESs), and Support Vector Machines (SVMs). The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature." @default.
- W2080565523 created "2016-06-24" @default.
- W2080565523 creator A5082556477 @default.
- W2080565523 creator A5087127477 @default.
- W2080565523 date "2012-01-01" @default.
- W2080565523 modified "2023-09-26" @default.
- W2080565523 title "Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study" @default.
- W2080565523 cites W2015245929 @default.
- W2080565523 cites W2076047580 @default.
- W2080565523 cites W2130012476 @default.
- W2080565523 cites W2136461127 @default.
- W2080565523 cites W2139212933 @default.
- W2080565523 cites W2337287328 @default.
- W2080565523 doi "https://doi.org/10.1155/2012/242401" @default.
- W2080565523 hasPublicationYear "2012" @default.
- W2080565523 type Work @default.
- W2080565523 sameAs 2080565523 @default.
- W2080565523 citedByCount "25" @default.
- W2080565523 countsByYear W20805655232012 @default.
- W2080565523 countsByYear W20805655232013 @default.
- W2080565523 countsByYear W20805655232014 @default.
- W2080565523 countsByYear W20805655232015 @default.
- W2080565523 countsByYear W20805655232016 @default.
- W2080565523 countsByYear W20805655232017 @default.
- W2080565523 countsByYear W20805655232018 @default.
- W2080565523 countsByYear W20805655232019 @default.
- W2080565523 countsByYear W20805655232020 @default.
- W2080565523 countsByYear W20805655232021 @default.
- W2080565523 countsByYear W20805655232022 @default.
- W2080565523 crossrefType "journal-article" @default.
- W2080565523 hasAuthorship W2080565523A5082556477 @default.
- W2080565523 hasAuthorship W2080565523A5087127477 @default.
- W2080565523 hasBestOaLocation W20805655231 @default.
- W2080565523 hasConcept C11413529 @default.
- W2080565523 hasConcept C119857082 @default.
- W2080565523 hasConcept C12267149 @default.
- W2080565523 hasConcept C124101348 @default.
- W2080565523 hasConcept C13280743 @default.
- W2080565523 hasConcept C153180895 @default.
- W2080565523 hasConcept C154945302 @default.
- W2080565523 hasConcept C184297639 @default.
- W2080565523 hasConcept C185798385 @default.
- W2080565523 hasConcept C205649164 @default.
- W2080565523 hasConcept C41008148 @default.
- W2080565523 hasConceptScore W2080565523C11413529 @default.
- W2080565523 hasConceptScore W2080565523C119857082 @default.
- W2080565523 hasConceptScore W2080565523C12267149 @default.
- W2080565523 hasConceptScore W2080565523C124101348 @default.
- W2080565523 hasConceptScore W2080565523C13280743 @default.
- W2080565523 hasConceptScore W2080565523C153180895 @default.
- W2080565523 hasConceptScore W2080565523C154945302 @default.
- W2080565523 hasConceptScore W2080565523C184297639 @default.
- W2080565523 hasConceptScore W2080565523C185798385 @default.
- W2080565523 hasConceptScore W2080565523C205649164 @default.
- W2080565523 hasConceptScore W2080565523C41008148 @default.
- W2080565523 hasFunder F4320320300 @default.
- W2080565523 hasLocation W20805655231 @default.
- W2080565523 hasOpenAccess W2080565523 @default.
- W2080565523 hasPrimaryLocation W20805655231 @default.
- W2080565523 hasRelatedWork W169774068 @default.
- W2080565523 hasRelatedWork W2041399278 @default.
- W2080565523 hasRelatedWork W2099369243 @default.
- W2080565523 hasRelatedWork W2136184105 @default.
- W2080565523 hasRelatedWork W2141705618 @default.
- W2080565523 hasRelatedWork W2153189372 @default.
- W2080565523 hasRelatedWork W3194539120 @default.
- W2080565523 hasRelatedWork W4223656335 @default.
- W2080565523 hasRelatedWork W2187500075 @default.
- W2080565523 hasRelatedWork W2345184372 @default.
- W2080565523 hasVolume "2012" @default.
- W2080565523 isParatext "false" @default.
- W2080565523 isRetracted "false" @default.
- W2080565523 magId "2080565523" @default.
- W2080565523 workType "article" @default.