Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080577682> ?p ?o ?g. }
- W2080577682 endingPage "588" @default.
- W2080577682 startingPage "564" @default.
- W2080577682 abstract "1. In order to assess the future impact of a proposed development or evaluate the cost effectiveness of proposed mitigating measures, ecologists must be able to provide accurate predictions under new environmental conditions. The difficulty with predicting to new circumstances is that often there is no way of knowing whether the empirical relationships upon which models are based will hold under the new conditions, and so predictions are of uncertain accuracy. 2. We present a model, based on the optimality approach of behavioural ecology, that is designed to overcome this problem. The model's central assumption is that each individual within a population always behaves in order to maximize its fitness. The model follows the optimal decisions of each individual within a population and predicts population mortality rate from the survival consequences of these decisions. Such behaviour-based models should provide a reliable means of predicting to new circumstances because, even if conditions change greatly, the basis of predictions – fitness maximization – will not. 3. The model was parameterized and tested for a shorebird, the oystercatcher Haematopus ostralegus. Development aimed to minimize the difference between predicted and observed overwinter starvation rates of juveniles, immatures and adults during the model calibration years of 1976–80. The model was tested by comparing its predicted starvation rates with the observed rates for another sample of years during 1980–91, when the oystercatcher population was larger than in the model calibration years. It predicted the observed density-dependent increase in mortality rate in these years, outside the conditions for which it was parameterized. 4. The predicted overwinter mortality rate was based on generally realistic behaviour of oystercatchers within the model population. The two submodels that predicted the interference-free intake rates and the numbers and densities of birds on the different mussel Mytilus edulis beds at low water did so with good precision. The model also predicted reasonably well (i) the stage of the winter at which the birds starved; (ii) the relative mass of birds using different feeding methods; (iii) the number of minutes birds spent feeding on mussels at low water during both the night and day; and (iv) the dates at which birds supplemented their low tide intake of mussels by also feeding on supplementary prey in fields while mussel beds were unavailable over the high water period. 5. A sensitivity analysis showed that the model's predictive ability depended on virtually all of its parameters. However, the importance of different parameters varied considerably. In particular, variation in gross energetic parameters had a greater influence on predictions than variations in behavioural parameters. In accord with this, much of the model's predictive power was retained when a detailed foraging submodel was replaced with a simple functional response relating intake rate to mussel biomass. The behavioural parameters were not irrelevant, however, as these were the basis of predictions. 6. Although we applied the model to oystercatchers, the general principle on which it is based applies widely. We list the key parameters that need to be measured in order to apply the model to other systems, estimate the time scales involved and describe the types of environmental changes that can be modelled. For example, in the case of estuaries, the model can be used to predict the impact of habitat loss, changes in the intensity or method of shellfishing, or changes in the frequency of human disturbance. 7. We conclude that behaviour-based models provide a good basis for predicting how demographic parameters, and thus population size, would be affected by novel environments. The key reason for this is that, by being based on optimal decision rules, animals in these models are likely to respond to environmental changes in the same way as real ones would." @default.
- W2080577682 created "2016-06-24" @default.
- W2080577682 creator A5006664834 @default.
- W2080577682 creator A5028315748 @default.
- W2080577682 creator A5046560328 @default.
- W2080577682 creator A5062281013 @default.
- W2080577682 creator A5073554842 @default.
- W2080577682 creator A5079897298 @default.
- W2080577682 creator A5081573346 @default.
- W2080577682 date "2000-08-01" @default.
- W2080577682 modified "2023-09-27" @default.
- W2080577682 title "Predicting mortality in novel environments: tests and sensitivity of a behaviour-based model" @default.
- W2080577682 cites W1415442047 @default.
- W2080577682 cites W1596529738 @default.
- W2080577682 cites W1960351623 @default.
- W2080577682 cites W1975517595 @default.
- W2080577682 cites W1984387224 @default.
- W2080577682 cites W1991170532 @default.
- W2080577682 cites W1996601320 @default.
- W2080577682 cites W2034286125 @default.
- W2080577682 cites W2036387827 @default.
- W2080577682 cites W2056335571 @default.
- W2080577682 cites W2059277380 @default.
- W2080577682 cites W2060663163 @default.
- W2080577682 cites W2073932436 @default.
- W2080577682 cites W2080598899 @default.
- W2080577682 cites W2092086201 @default.
- W2080577682 cites W2096424160 @default.
- W2080577682 cites W2135415321 @default.
- W2080577682 cites W2136127709 @default.
- W2080577682 cites W2136284908 @default.
- W2080577682 cites W2147686959 @default.
- W2080577682 cites W2241015522 @default.
- W2080577682 cites W2315075855 @default.
- W2080577682 cites W2316983099 @default.
- W2080577682 cites W2318259615 @default.
- W2080577682 cites W2318290534 @default.
- W2080577682 cites W2318368363 @default.
- W2080577682 cites W2319282646 @default.
- W2080577682 cites W2320593431 @default.
- W2080577682 cites W2321871990 @default.
- W2080577682 cites W2324037622 @default.
- W2080577682 cites W2324655308 @default.
- W2080577682 cites W2325670278 @default.
- W2080577682 cites W2559257002 @default.
- W2080577682 cites W2560368687 @default.
- W2080577682 cites W2595581177 @default.
- W2080577682 cites W266983629 @default.
- W2080577682 cites W352312011 @default.
- W2080577682 cites W2052537326 @default.
- W2080577682 doi "https://doi.org/10.1046/j.1365-2664.2000.00506.x" @default.
- W2080577682 hasPublicationYear "2000" @default.
- W2080577682 type Work @default.
- W2080577682 sameAs 2080577682 @default.
- W2080577682 citedByCount "129" @default.
- W2080577682 countsByYear W20805776822012 @default.
- W2080577682 countsByYear W20805776822013 @default.
- W2080577682 countsByYear W20805776822014 @default.
- W2080577682 countsByYear W20805776822015 @default.
- W2080577682 countsByYear W20805776822016 @default.
- W2080577682 countsByYear W20805776822017 @default.
- W2080577682 countsByYear W20805776822018 @default.
- W2080577682 countsByYear W20805776822019 @default.
- W2080577682 countsByYear W20805776822021 @default.
- W2080577682 countsByYear W20805776822022 @default.
- W2080577682 countsByYear W20805776822023 @default.
- W2080577682 crossrefType "journal-article" @default.
- W2080577682 hasAuthorship W2080577682A5006664834 @default.
- W2080577682 hasAuthorship W2080577682A5028315748 @default.
- W2080577682 hasAuthorship W2080577682A5046560328 @default.
- W2080577682 hasAuthorship W2080577682A5062281013 @default.
- W2080577682 hasAuthorship W2080577682A5073554842 @default.
- W2080577682 hasAuthorship W2080577682A5079897298 @default.
- W2080577682 hasAuthorship W2080577682A5081573346 @default.
- W2080577682 hasBestOaLocation W20805776821 @default.
- W2080577682 hasConcept C105795698 @default.
- W2080577682 hasConcept C11413529 @default.
- W2080577682 hasConcept C126255220 @default.
- W2080577682 hasConcept C127413603 @default.
- W2080577682 hasConcept C144024400 @default.
- W2080577682 hasConcept C149782125 @default.
- W2080577682 hasConcept C149923435 @default.
- W2080577682 hasConcept C165464430 @default.
- W2080577682 hasConcept C18903297 @default.
- W2080577682 hasConcept C21200559 @default.
- W2080577682 hasConcept C24326235 @default.
- W2080577682 hasConcept C2776330181 @default.
- W2080577682 hasConcept C2780507753 @default.
- W2080577682 hasConcept C2908647359 @default.
- W2080577682 hasConcept C33923547 @default.
- W2080577682 hasConcept C41008148 @default.
- W2080577682 hasConcept C52079815 @default.
- W2080577682 hasConcept C77352025 @default.
- W2080577682 hasConcept C86803240 @default.
- W2080577682 hasConceptScore W2080577682C105795698 @default.
- W2080577682 hasConceptScore W2080577682C11413529 @default.
- W2080577682 hasConceptScore W2080577682C126255220 @default.
- W2080577682 hasConceptScore W2080577682C127413603 @default.