Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080593651> ?p ?o ?g. }
- W2080593651 endingPage "1697" @default.
- W2080593651 startingPage "1685" @default.
- W2080593651 abstract "Positron emission tomography (PET)-computed tomography (CT) images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work, we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov random field model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two sub-graphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT." @default.
- W2080593651 created "2016-06-24" @default.
- W2080593651 creator A5015469682 @default.
- W2080593651 creator A5024649502 @default.
- W2080593651 creator A5040980527 @default.
- W2080593651 creator A5044520965 @default.
- W2080593651 creator A5048574296 @default.
- W2080593651 creator A5055750453 @default.
- W2080593651 creator A5061443122 @default.
- W2080593651 creator A5069614792 @default.
- W2080593651 creator A5073223968 @default.
- W2080593651 date "2013-09-01" @default.
- W2080593651 modified "2023-09-26" @default.
- W2080593651 title "Optimal Co-Segmentation of Tumor in PET-CT Images With Context Information" @default.
- W2080593651 cites W1553286574 @default.
- W2080593651 cites W1693743017 @default.
- W2080593651 cites W1832274547 @default.
- W2080593651 cites W1964237985 @default.
- W2080593651 cites W196862470 @default.
- W2080593651 cites W1973169445 @default.
- W2080593651 cites W1977452142 @default.
- W2080593651 cites W1985859085 @default.
- W2080593651 cites W1990684369 @default.
- W2080593651 cites W1993917351 @default.
- W2080593651 cites W1995102805 @default.
- W2080593651 cites W1999478155 @default.
- W2080593651 cites W2008332581 @default.
- W2080593651 cites W2013574253 @default.
- W2080593651 cites W2019929699 @default.
- W2080593651 cites W2033829070 @default.
- W2080593651 cites W2038210795 @default.
- W2080593651 cites W2043408616 @default.
- W2080593651 cites W2044380336 @default.
- W2080593651 cites W2051549814 @default.
- W2080593651 cites W2052111388 @default.
- W2080593651 cites W2066064526 @default.
- W2080593651 cites W2069925770 @default.
- W2080593651 cites W2083181574 @default.
- W2080593651 cites W2083857632 @default.
- W2080593651 cites W2084567764 @default.
- W2080593651 cites W2091777454 @default.
- W2080593651 cites W2100296123 @default.
- W2080593651 cites W2100858680 @default.
- W2080593651 cites W2104716980 @default.
- W2080593651 cites W2107733193 @default.
- W2080593651 cites W2110347326 @default.
- W2080593651 cites W2110593503 @default.
- W2080593651 cites W2114542651 @default.
- W2080593651 cites W2115051059 @default.
- W2080593651 cites W2119173284 @default.
- W2080593651 cites W2119300483 @default.
- W2080593651 cites W2128280382 @default.
- W2080593651 cites W2129260071 @default.
- W2080593651 cites W2130332406 @default.
- W2080593651 cites W2133287637 @default.
- W2080593651 cites W2134655752 @default.
- W2080593651 cites W2139248078 @default.
- W2080593651 cites W2140783866 @default.
- W2080593651 cites W2140827232 @default.
- W2080593651 cites W2148347694 @default.
- W2080593651 cites W2152512929 @default.
- W2080593651 cites W2153628513 @default.
- W2080593651 cites W2156835537 @default.
- W2080593651 cites W2157244733 @default.
- W2080593651 cites W2161430726 @default.
- W2080593651 cites W2164774194 @default.
- W2080593651 cites W3021922582 @default.
- W2080593651 cites W4239674486 @default.
- W2080593651 cites W4321317560 @default.
- W2080593651 cites W4376522538 @default.
- W2080593651 doi "https://doi.org/10.1109/tmi.2013.2263388" @default.
- W2080593651 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3965345" @default.
- W2080593651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23693127" @default.
- W2080593651 hasPublicationYear "2013" @default.
- W2080593651 type Work @default.
- W2080593651 sameAs 2080593651 @default.
- W2080593651 citedByCount "111" @default.
- W2080593651 countsByYear W20805936512013 @default.
- W2080593651 countsByYear W20805936512014 @default.
- W2080593651 countsByYear W20805936512015 @default.
- W2080593651 countsByYear W20805936512016 @default.
- W2080593651 countsByYear W20805936512017 @default.
- W2080593651 countsByYear W20805936512018 @default.
- W2080593651 countsByYear W20805936512019 @default.
- W2080593651 countsByYear W20805936512020 @default.
- W2080593651 countsByYear W20805936512021 @default.
- W2080593651 countsByYear W20805936512022 @default.
- W2080593651 countsByYear W20805936512023 @default.
- W2080593651 crossrefType "journal-article" @default.
- W2080593651 hasAuthorship W2080593651A5015469682 @default.
- W2080593651 hasAuthorship W2080593651A5024649502 @default.
- W2080593651 hasAuthorship W2080593651A5040980527 @default.
- W2080593651 hasAuthorship W2080593651A5044520965 @default.
- W2080593651 hasAuthorship W2080593651A5048574296 @default.
- W2080593651 hasAuthorship W2080593651A5055750453 @default.
- W2080593651 hasAuthorship W2080593651A5061443122 @default.
- W2080593651 hasAuthorship W2080593651A5069614792 @default.
- W2080593651 hasAuthorship W2080593651A5073223968 @default.