Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080632942> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2080632942 abstract "A number of vertical mining algorithms have been proposed recently for association mining, which have shown to be very effective and usually outperform horizontal approaches. The main advantage of the vertical format is support for fast frequency counting via intersection operations on transaction ids (tids) and automatic pruning of irrelevant data. The main problem with these approaches is when intermediate results of vertical tid lists become too large for memory, thus affecting the algorithm scalability.In this paper we present a novel vertical data representation called Diffset, that only keeps track of differences in the tids of a candidate pattern from its generating frequent patterns. We show that diffsets drastically cut down the size of memory required to store intermediate results. We show how diffsets, when incorporated into previous vertical mining methods, increase the performance significantly." @default.
- W2080632942 created "2016-06-24" @default.
- W2080632942 creator A5019559411 @default.
- W2080632942 creator A5048610953 @default.
- W2080632942 date "2003-08-24" @default.
- W2080632942 modified "2023-10-02" @default.
- W2080632942 title "Fast vertical mining using diffsets" @default.
- W2080632942 cites W2030969394 @default.
- W2080632942 cites W2037965136 @default.
- W2080632942 cites W2064803206 @default.
- W2080632942 cites W2068383400 @default.
- W2080632942 cites W2069356553 @default.
- W2080632942 cites W2094974204 @default.
- W2080632942 cites W2099404336 @default.
- W2080632942 cites W2141115288 @default.
- W2080632942 cites W4249787843 @default.
- W2080632942 cites W4252403066 @default.
- W2080632942 doi "https://doi.org/10.1145/956750.956788" @default.
- W2080632942 hasPublicationYear "2003" @default.
- W2080632942 type Work @default.
- W2080632942 sameAs 2080632942 @default.
- W2080632942 citedByCount "405" @default.
- W2080632942 countsByYear W20806329422012 @default.
- W2080632942 countsByYear W20806329422013 @default.
- W2080632942 countsByYear W20806329422014 @default.
- W2080632942 countsByYear W20806329422015 @default.
- W2080632942 countsByYear W20806329422016 @default.
- W2080632942 countsByYear W20806329422017 @default.
- W2080632942 countsByYear W20806329422018 @default.
- W2080632942 countsByYear W20806329422019 @default.
- W2080632942 countsByYear W20806329422020 @default.
- W2080632942 countsByYear W20806329422021 @default.
- W2080632942 countsByYear W20806329422022 @default.
- W2080632942 countsByYear W20806329422023 @default.
- W2080632942 crossrefType "proceedings-article" @default.
- W2080632942 hasAuthorship W2080632942A5019559411 @default.
- W2080632942 hasAuthorship W2080632942A5048610953 @default.
- W2080632942 hasConcept C41008148 @default.
- W2080632942 hasConceptScore W2080632942C41008148 @default.
- W2080632942 hasLocation W20806329421 @default.
- W2080632942 hasOpenAccess W2080632942 @default.
- W2080632942 hasPrimaryLocation W20806329421 @default.
- W2080632942 hasRelatedWork W2093578348 @default.
- W2080632942 hasRelatedWork W2096946506 @default.
- W2080632942 hasRelatedWork W2350741829 @default.
- W2080632942 hasRelatedWork W2358668433 @default.
- W2080632942 hasRelatedWork W2376932109 @default.
- W2080632942 hasRelatedWork W2382290278 @default.
- W2080632942 hasRelatedWork W2390279801 @default.
- W2080632942 hasRelatedWork W2748952813 @default.
- W2080632942 hasRelatedWork W2766271392 @default.
- W2080632942 hasRelatedWork W2899084033 @default.
- W2080632942 isParatext "false" @default.
- W2080632942 isRetracted "false" @default.
- W2080632942 magId "2080632942" @default.
- W2080632942 workType "article" @default.