Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080696064> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2080696064 endingPage "2109" @default.
- W2080696064 startingPage "2101" @default.
- W2080696064 abstract "Combined therapy using Interferon alfa (IFN) and Ribavirin (RIB) represents the standard treatment in patients with chronic hepatitis C. However, the percentage of responders to this regimen is still low, while its cost and side effects are elevated. Therefore, the possibility to predict patients response to the above treatment is of paramount importance. The progress in the field of informatics and its large use for decision making has led to the development of novel techniques related to the so-called Artificial Intelligence, even including artificial neural networks (ANNs). In chronic viral hepatitis data are lacking. By means of an artificial neural network (ANN), 300 patients treated with IFN plus RIB were retrospectively analyzed with the aim to predict the response to the treatment. One hundred patients resulted responders and 200 non-responders at the end of treatment and during the follow up. For evaluating the prediction of treatment response, six ANNs with 16 neurons of input, an hidden layer with 7 neurons and an output layer with one neuron were utilized. The ANN model generated a positive predictive value (i.e. posterior probability of treatment response) ranging from 57% to 75% while the negative one (i.e. posterior probability of no response to treatment) was comprised between 52% and 71%. The highest level of diagnostic accuracy was 70%. In conclusion, ANNs appear to be a promising tool in the prediction of treatment response in patients with chronic hepatitis C. However, additional prospective studies are necessary to ultimately validate this predictive method. Keywords: hepatitis c, prediction, interferon, ribavirin, artificial neural network" @default.
- W2080696064 created "2016-06-24" @default.
- W2080696064 creator A5035958279 @default.
- W2080696064 creator A5080839521 @default.
- W2080696064 creator A5081835160 @default.
- W2080696064 date "2004-07-01" @default.
- W2080696064 modified "2023-09-24" @default.
- W2080696064 title "Artificial Neural Networks for the Prediction of Response to Interferon Plus Ribavirin Treatment in Patients with Chronic Hepatitis C" @default.
- W2080696064 doi "https://doi.org/10.2174/1381612043384240" @default.
- W2080696064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15279549" @default.
- W2080696064 hasPublicationYear "2004" @default.
- W2080696064 type Work @default.
- W2080696064 sameAs 2080696064 @default.
- W2080696064 citedByCount "36" @default.
- W2080696064 countsByYear W20806960642012 @default.
- W2080696064 countsByYear W20806960642013 @default.
- W2080696064 countsByYear W20806960642014 @default.
- W2080696064 countsByYear W20806960642015 @default.
- W2080696064 countsByYear W20806960642020 @default.
- W2080696064 countsByYear W20806960642021 @default.
- W2080696064 countsByYear W20806960642022 @default.
- W2080696064 countsByYear W20806960642023 @default.
- W2080696064 crossrefType "journal-article" @default.
- W2080696064 hasAuthorship W2080696064A5035958279 @default.
- W2080696064 hasAuthorship W2080696064A5080839521 @default.
- W2080696064 hasAuthorship W2080696064A5081835160 @default.
- W2080696064 hasConcept C126322002 @default.
- W2080696064 hasConcept C154945302 @default.
- W2080696064 hasConcept C203014093 @default.
- W2080696064 hasConcept C2522874641 @default.
- W2080696064 hasConcept C2776178377 @default.
- W2080696064 hasConcept C2776455275 @default.
- W2080696064 hasConcept C2780040827 @default.
- W2080696064 hasConcept C2781413609 @default.
- W2080696064 hasConcept C2909179924 @default.
- W2080696064 hasConcept C3019719930 @default.
- W2080696064 hasConcept C3020491458 @default.
- W2080696064 hasConcept C3020505244 @default.
- W2080696064 hasConcept C41008148 @default.
- W2080696064 hasConcept C50644808 @default.
- W2080696064 hasConcept C71924100 @default.
- W2080696064 hasConceptScore W2080696064C126322002 @default.
- W2080696064 hasConceptScore W2080696064C154945302 @default.
- W2080696064 hasConceptScore W2080696064C203014093 @default.
- W2080696064 hasConceptScore W2080696064C2522874641 @default.
- W2080696064 hasConceptScore W2080696064C2776178377 @default.
- W2080696064 hasConceptScore W2080696064C2776455275 @default.
- W2080696064 hasConceptScore W2080696064C2780040827 @default.
- W2080696064 hasConceptScore W2080696064C2781413609 @default.
- W2080696064 hasConceptScore W2080696064C2909179924 @default.
- W2080696064 hasConceptScore W2080696064C3019719930 @default.
- W2080696064 hasConceptScore W2080696064C3020491458 @default.
- W2080696064 hasConceptScore W2080696064C3020505244 @default.
- W2080696064 hasConceptScore W2080696064C41008148 @default.
- W2080696064 hasConceptScore W2080696064C50644808 @default.
- W2080696064 hasConceptScore W2080696064C71924100 @default.
- W2080696064 hasIssue "17" @default.
- W2080696064 hasLocation W20806960641 @default.
- W2080696064 hasLocation W20806960642 @default.
- W2080696064 hasOpenAccess W2080696064 @default.
- W2080696064 hasPrimaryLocation W20806960641 @default.
- W2080696064 hasRelatedWork W1978167988 @default.
- W2080696064 hasRelatedWork W2000349119 @default.
- W2080696064 hasRelatedWork W2035372539 @default.
- W2080696064 hasRelatedWork W2070127208 @default.
- W2080696064 hasRelatedWork W2098357894 @default.
- W2080696064 hasRelatedWork W2124098035 @default.
- W2080696064 hasRelatedWork W2317554121 @default.
- W2080696064 hasRelatedWork W2347142336 @default.
- W2080696064 hasRelatedWork W2411773677 @default.
- W2080696064 hasRelatedWork W2462498398 @default.
- W2080696064 hasVolume "10" @default.
- W2080696064 isParatext "false" @default.
- W2080696064 isRetracted "false" @default.
- W2080696064 magId "2080696064" @default.
- W2080696064 workType "article" @default.