Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080758057> ?p ?o ?g. }
- W2080758057 endingPage "962" @default.
- W2080758057 startingPage "941" @default.
- W2080758057 abstract "The passive tension and sarcomere length of relaxed frog skeletal muscle fibres were measured in response to imposed length stretches. The tension response to a constant‐velocity stretch exhibited a clear discontinuity. Tension rose more rapidly during the initial ∼ 0.4 % L 0 of the stretch than during the latter stages (where L 0 is the resting length of the fibre). This initial tension response is attributed to the short‐range elastic component (SREC). The use of paired triangular stretches revealed that the maximum tension produced during the SREC response of the second stretch was significantly reduced by the first stretch. This history‐dependent behaviour of the SREC reflects thixotropic stiffness changes that have been previously described in relaxed muscle. The biphasic nature of the SREC tension response to movement was most apparent during the first imposed length change after a period at a fixed length, irrespective of the direction of movement. If a relaxed muscle was subjected to an imposed triangular length change so that the muscle was initially stretched and subsequently shortened back to its original fibre length, the resting tension at the end of the stretch was reduced relative to its initial pre‐stretch value. Following the end of the stretch, tension slowly increased towards its initial value but the tension recovery was not accompanied by a contemporaneous increase in sarcomere length. This finding suggests that the resting tension of a relaxed muscle fibre is not entirely due to passive elasticity. The results are compatible with the suggestion that a portion of the resting tension ‐ the filamentary resting tension (FRT) ‐ is produced by a low level of active force generation. If a second identical stretch was imposed on the muscle at a time when the resting tension was reduced by the previous stretch, the maximal tension produced during the second stretch was the same as that produced during the first, despite the second stretch commencing from a lower initial resting tension. In experiments using paired triangular length changes, an inter‐stretch interval of zero did not produce a substantially greater thixotropic reduction in the second stretch elastic limit force than an inter‐stretch interval in the range 0.5‐1 s. A theoretical model was developed in which the SREC and FRT arise as manifestations of a small number of slowly cycling cross‐bridges linking the actin and myosin filaments of a relaxed skeletal muscle. The predictions of the model are compatible with many of the experimental observations. If the SREC and FRT are indeed due to cross‐bridge activity, the model suggests that the cross‐bridge attachment rate must increase during interfilamentary movement. A mechanism (based on misregistration between the actin binding sites and the myosin cross‐bridges) by which this might arise is presented." @default.
- W2080758057 created "2016-06-24" @default.
- W2080758057 creator A5021226161 @default.
- W2080758057 creator A5056582697 @default.
- W2080758057 date "1998-08-01" @default.
- W2080758057 modified "2023-10-15" @default.
- W2080758057 title "A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle" @default.
- W2080758057 cites W1624124226 @default.
- W2080758057 cites W1770314367 @default.
- W2080758057 cites W1968144171 @default.
- W2080758057 cites W1971854624 @default.
- W2080758057 cites W1977378217 @default.
- W2080758057 cites W1984647013 @default.
- W2080758057 cites W1986960825 @default.
- W2080758057 cites W1987315602 @default.
- W2080758057 cites W1989331603 @default.
- W2080758057 cites W1990799497 @default.
- W2080758057 cites W1991884643 @default.
- W2080758057 cites W1992039261 @default.
- W2080758057 cites W1995472161 @default.
- W2080758057 cites W1999897741 @default.
- W2080758057 cites W2006111226 @default.
- W2080758057 cites W2018096372 @default.
- W2080758057 cites W2021190077 @default.
- W2080758057 cites W2031930307 @default.
- W2080758057 cites W2036271044 @default.
- W2080758057 cites W2037828542 @default.
- W2080758057 cites W2039654717 @default.
- W2080758057 cites W2041510552 @default.
- W2080758057 cites W2044854827 @default.
- W2080758057 cites W2063563069 @default.
- W2080758057 cites W2065396606 @default.
- W2080758057 cites W2065884210 @default.
- W2080758057 cites W2073707353 @default.
- W2080758057 cites W2078026023 @default.
- W2080758057 cites W2087715207 @default.
- W2080758057 cites W2088226934 @default.
- W2080758057 cites W2093537924 @default.
- W2080758057 cites W2120572229 @default.
- W2080758057 cites W2123713340 @default.
- W2080758057 cites W2133061669 @default.
- W2080758057 cites W2145769346 @default.
- W2080758057 cites W2155847036 @default.
- W2080758057 cites W2162521829 @default.
- W2080758057 cites W2323721228 @default.
- W2080758057 cites W2426897960 @default.
- W2080758057 cites W2438508423 @default.
- W2080758057 cites W2473445192 @default.
- W2080758057 cites W2487048587 @default.
- W2080758057 cites W2991355612 @default.
- W2080758057 cites W4245428601 @default.
- W2080758057 cites W69586344 @default.
- W2080758057 cites W789458867 @default.
- W2080758057 cites W808866616 @default.
- W2080758057 doi "https://doi.org/10.1111/j.1469-7793.1998.941bj.x" @default.
- W2080758057 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2231083" @default.
- W2080758057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9660904" @default.
- W2080758057 hasPublicationYear "1998" @default.
- W2080758057 type Work @default.
- W2080758057 sameAs 2080758057 @default.
- W2080758057 citedByCount "126" @default.
- W2080758057 countsByYear W20807580572012 @default.
- W2080758057 countsByYear W20807580572013 @default.
- W2080758057 countsByYear W20807580572014 @default.
- W2080758057 countsByYear W20807580572015 @default.
- W2080758057 countsByYear W20807580572016 @default.
- W2080758057 countsByYear W20807580572017 @default.
- W2080758057 countsByYear W20807580572018 @default.
- W2080758057 countsByYear W20807580572019 @default.
- W2080758057 countsByYear W20807580572020 @default.
- W2080758057 countsByYear W20807580572021 @default.
- W2080758057 countsByYear W20807580572022 @default.
- W2080758057 countsByYear W20807580572023 @default.
- W2080758057 crossrefType "journal-article" @default.
- W2080758057 hasAuthorship W2080758057A5021226161 @default.
- W2080758057 hasAuthorship W2080758057A5056582697 @default.
- W2080758057 hasBestOaLocation W20807580572 @default.
- W2080758057 hasConcept C105702510 @default.
- W2080758057 hasConcept C112950240 @default.
- W2080758057 hasConcept C121332964 @default.
- W2080758057 hasConcept C121854251 @default.
- W2080758057 hasConcept C12554922 @default.
- W2080758057 hasConcept C134018914 @default.
- W2080758057 hasConcept C159985019 @default.
- W2080758057 hasConcept C185592680 @default.
- W2080758057 hasConcept C186068551 @default.
- W2080758057 hasConcept C192562407 @default.
- W2080758057 hasConcept C207200792 @default.
- W2080758057 hasConcept C2776050358 @default.
- W2080758057 hasConcept C2779372316 @default.
- W2080758057 hasConcept C2779959927 @default.
- W2080758057 hasConcept C56918372 @default.
- W2080758057 hasConcept C57879066 @default.
- W2080758057 hasConcept C68731436 @default.
- W2080758057 hasConcept C86803240 @default.
- W2080758057 hasConceptScore W2080758057C105702510 @default.
- W2080758057 hasConceptScore W2080758057C112950240 @default.
- W2080758057 hasConceptScore W2080758057C121332964 @default.