Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080759563> ?p ?o ?g. }
- W2080759563 abstract "In iterative positron emission tomography (PET) image reconstruction, the statistical variability of the PET data precorrected for random coincidences or acquired in sufficiently high count rates can be properly approximated by a Gaussian distribution, which can lead to a penalized weighted least-squares (PWLS) cost function. In this study, the authors propose a proximal preconditioned gradient algorithm accelerated with ordered subsets (PPG-OS) for the optimization of the PWLS cost function and develop a framework to incorporate boundary side information into edge-preserving total variation (TV) and Huber regularizations.The PPG-OS algorithm is proposed to address two issues encountered in the optimization of PWLS function with edge-preserving regularizers. First, the second derivative of this function (Hessian matrix) is shift-variant and ill-conditioned due to the weighting matrix (which includes emission data, attenuation, and normalization correction factors) and the regularizer. As a result, the paraboloidal surrogate functions (used in the optimization transfer techniques) end up with high curvatures and gradient-based algorithms take smaller step-sizes toward the solution, leading to a slow convergence. In addition, preconditioners used to improve the condition number of the problem, and thus to speed up the convergence, would poorly act on the resulting ill-conditioned Hessian matrix. Second, the PWLS function with a nondifferentiable penalty such as TV is not amenable to optimization using gradient-based algorithms. To deal with these issues and also to enhance edge-preservation of the TV and Huber regularizers by incorporating adaptively or anatomically derived boundary side information, the authors followed a proximal splitting method. Thereby, the optimization of the PWLS function is split into a gradient descent step (upgraded by preconditioning, step size optimization, and ordered subsets) and a proximal mapping associated with boundary weighted TV and Huber regularizers. The proximal mapping is then iteratively solved by dual formulation of the regularizers.The convergence performance of the proposed algorithm was studied with three different diagonal preconditioners and compared with the state-of-the-art separable paraboloidal surrogates accelerated with ordered-subsets (SPS-OS) algorithm. In simulation studies using a realistic numerical phantom, it was shown that the proposed algorithm depicts a considerably improved convergence rate over the SPS-OS algorithm. Furthermore, the results of bias-variance and signal-to-noise evaluations showed that the proposed algorithm with anatomical edge information depicts an improved performance over conventional regularization. Finally, the proposed PPG-OS algorithm is used for image reconstruction of a clinical study with adaptively derived boundary edge information, demonstrating the potential of the algorithm for fast and edge-preserving PET image reconstruction.The proposed PPG-OS algorithm shows an improved convergence rate with the ability of incorporating additional boundary information in regularized PET image reconstruction." @default.
- W2080759563 created "2016-06-24" @default.
- W2080759563 creator A5002606129 @default.
- W2080759563 creator A5007891293 @default.
- W2080759563 creator A5021438906 @default.
- W2080759563 creator A5045688766 @default.
- W2080759563 creator A5080907554 @default.
- W2080759563 date "2013-04-23" @default.
- W2080759563 modified "2023-09-23" @default.
- W2080759563 title "An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction" @default.
- W2080759563 cites W1967581593 @default.
- W2080759563 cites W1980003430 @default.
- W2080759563 cites W1980288291 @default.
- W2080759563 cites W1994071579 @default.
- W2080759563 cites W2006707084 @default.
- W2080759563 cites W2021594562 @default.
- W2080759563 cites W2024903557 @default.
- W2080759563 cites W2032237670 @default.
- W2080759563 cites W2037922117 @default.
- W2080759563 cites W2040167422 @default.
- W2080759563 cites W2058532290 @default.
- W2080759563 cites W2081917971 @default.
- W2080759563 cites W2089050201 @default.
- W2080759563 cites W2092663520 @default.
- W2080759563 cites W2095604302 @default.
- W2080759563 cites W2097726319 @default.
- W2080759563 cites W2099111624 @default.
- W2080759563 cites W2101932199 @default.
- W2080759563 cites W2103559027 @default.
- W2080759563 cites W2104455572 @default.
- W2080759563 cites W2110844694 @default.
- W2080759563 cites W2115563908 @default.
- W2080759563 cites W2115780003 @default.
- W2080759563 cites W2125893301 @default.
- W2080759563 cites W2129479894 @default.
- W2080759563 cites W2136664254 @default.
- W2080759563 cites W2139639076 @default.
- W2080759563 cites W2140785413 @default.
- W2080759563 cites W2143026372 @default.
- W2080759563 cites W2144275666 @default.
- W2080759563 cites W2145023731 @default.
- W2080759563 cites W2148813976 @default.
- W2080759563 cites W2149414429 @default.
- W2080759563 cites W2150134853 @default.
- W2080759563 cites W2150289298 @default.
- W2080759563 cites W2152693305 @default.
- W2080759563 cites W2156994346 @default.
- W2080759563 cites W2160748123 @default.
- W2080759563 cites W2166887721 @default.
- W2080759563 cites W2168530812 @default.
- W2080759563 cites W2168543121 @default.
- W2080759563 cites W2170039958 @default.
- W2080759563 cites W2176468401 @default.
- W2080759563 cites W2489822048 @default.
- W2080759563 cites W2800001338 @default.
- W2080759563 cites W3011612142 @default.
- W2080759563 cites W3100381408 @default.
- W2080759563 cites W3124114587 @default.
- W2080759563 cites W4253515568 @default.
- W2080759563 doi "https://doi.org/10.1118/1.4801898" @default.
- W2080759563 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23635293" @default.
- W2080759563 hasPublicationYear "2013" @default.
- W2080759563 type Work @default.
- W2080759563 sameAs 2080759563 @default.
- W2080759563 citedByCount "7" @default.
- W2080759563 countsByYear W20807595632014 @default.
- W2080759563 countsByYear W20807595632015 @default.
- W2080759563 countsByYear W20807595632016 @default.
- W2080759563 countsByYear W20807595632017 @default.
- W2080759563 countsByYear W20807595632018 @default.
- W2080759563 crossrefType "journal-article" @default.
- W2080759563 hasAuthorship W2080759563A5002606129 @default.
- W2080759563 hasAuthorship W2080759563A5007891293 @default.
- W2080759563 hasAuthorship W2080759563A5021438906 @default.
- W2080759563 hasAuthorship W2080759563A5045688766 @default.
- W2080759563 hasAuthorship W2080759563A5080907554 @default.
- W2080759563 hasConcept C104293457 @default.
- W2080759563 hasConcept C11413529 @default.
- W2080759563 hasConcept C127162648 @default.
- W2080759563 hasConcept C130367717 @default.
- W2080759563 hasConcept C141379421 @default.
- W2080759563 hasConcept C154945302 @default.
- W2080759563 hasConcept C162307627 @default.
- W2080759563 hasConcept C162324750 @default.
- W2080759563 hasConcept C2524010 @default.
- W2080759563 hasConcept C2776135515 @default.
- W2080759563 hasConcept C2777303404 @default.
- W2080759563 hasConcept C2989005 @default.
- W2080759563 hasConcept C31258907 @default.
- W2080759563 hasConcept C31601959 @default.
- W2080759563 hasConcept C33923547 @default.
- W2080759563 hasConcept C41008148 @default.
- W2080759563 hasConcept C50522688 @default.
- W2080759563 hasConcept C57869625 @default.
- W2080759563 hasConcept C71924100 @default.
- W2080759563 hasConceptScore W2080759563C104293457 @default.
- W2080759563 hasConceptScore W2080759563C11413529 @default.
- W2080759563 hasConceptScore W2080759563C127162648 @default.
- W2080759563 hasConceptScore W2080759563C130367717 @default.
- W2080759563 hasConceptScore W2080759563C141379421 @default.