Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080759927> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2080759927 endingPage "692" @default.
- W2080759927 startingPage "671" @default.
- W2080759927 abstract "Most of the research in reinforcement learning has been on problems with discrete action spaces. However, many control problems require the application of continuous control signals. In this paper, we present a stochastic reinforcement learning algorithm for learning functions with continuous outputs using a connectionist network. We define stochastic units that compute their real-valued outputs as a function of random activations generated using the normal distribution. Learning takes place by using our algorithm to adjust the two parameters of the normal distribution so as to increase the probability of producing the optimal real value for each input pattern. The performance of the algorithm is studied by using it to learn tasks of varying levels of difficulty. Further, as an example of a potential application, we present a network incorporating these stochastic real-valued units that learns to perform an underconstrained positioning task using a simulated 3 degree-of-freedom robot arm." @default.
- W2080759927 created "2016-06-24" @default.
- W2080759927 creator A5070071941 @default.
- W2080759927 date "1990-01-01" @default.
- W2080759927 modified "2023-09-30" @default.
- W2080759927 title "A stochastic reinforcement learning algorithm for learning real-valued functions" @default.
- W2080759927 cites W2021801581 @default.
- W2080759927 cites W2042492924 @default.
- W2080759927 cites W2054946932 @default.
- W2080759927 cites W2102673654 @default.
- W2080759927 cites W2118919066 @default.
- W2080759927 doi "https://doi.org/10.1016/0893-6080(90)90056-q" @default.
- W2080759927 hasPublicationYear "1990" @default.
- W2080759927 type Work @default.
- W2080759927 sameAs 2080759927 @default.
- W2080759927 citedByCount "272" @default.
- W2080759927 countsByYear W20807599272012 @default.
- W2080759927 countsByYear W20807599272013 @default.
- W2080759927 countsByYear W20807599272014 @default.
- W2080759927 countsByYear W20807599272015 @default.
- W2080759927 countsByYear W20807599272016 @default.
- W2080759927 countsByYear W20807599272017 @default.
- W2080759927 countsByYear W20807599272018 @default.
- W2080759927 countsByYear W20807599272019 @default.
- W2080759927 countsByYear W20807599272020 @default.
- W2080759927 countsByYear W20807599272021 @default.
- W2080759927 countsByYear W20807599272022 @default.
- W2080759927 countsByYear W20807599272023 @default.
- W2080759927 crossrefType "journal-article" @default.
- W2080759927 hasAuthorship W2080759927A5070071941 @default.
- W2080759927 hasConcept C11413529 @default.
- W2080759927 hasConcept C119857082 @default.
- W2080759927 hasConcept C121332964 @default.
- W2080759927 hasConcept C14036430 @default.
- W2080759927 hasConcept C154945302 @default.
- W2080759927 hasConcept C162324750 @default.
- W2080759927 hasConcept C187736073 @default.
- W2080759927 hasConcept C188116033 @default.
- W2080759927 hasConcept C2780451532 @default.
- W2080759927 hasConcept C2780791683 @default.
- W2080759927 hasConcept C41008148 @default.
- W2080759927 hasConcept C50644808 @default.
- W2080759927 hasConcept C62520636 @default.
- W2080759927 hasConcept C78458016 @default.
- W2080759927 hasConcept C86803240 @default.
- W2080759927 hasConcept C97541855 @default.
- W2080759927 hasConceptScore W2080759927C11413529 @default.
- W2080759927 hasConceptScore W2080759927C119857082 @default.
- W2080759927 hasConceptScore W2080759927C121332964 @default.
- W2080759927 hasConceptScore W2080759927C14036430 @default.
- W2080759927 hasConceptScore W2080759927C154945302 @default.
- W2080759927 hasConceptScore W2080759927C162324750 @default.
- W2080759927 hasConceptScore W2080759927C187736073 @default.
- W2080759927 hasConceptScore W2080759927C188116033 @default.
- W2080759927 hasConceptScore W2080759927C2780451532 @default.
- W2080759927 hasConceptScore W2080759927C2780791683 @default.
- W2080759927 hasConceptScore W2080759927C41008148 @default.
- W2080759927 hasConceptScore W2080759927C50644808 @default.
- W2080759927 hasConceptScore W2080759927C62520636 @default.
- W2080759927 hasConceptScore W2080759927C78458016 @default.
- W2080759927 hasConceptScore W2080759927C86803240 @default.
- W2080759927 hasConceptScore W2080759927C97541855 @default.
- W2080759927 hasIssue "6" @default.
- W2080759927 hasLocation W20807599271 @default.
- W2080759927 hasOpenAccess W2080759927 @default.
- W2080759927 hasPrimaryLocation W20807599271 @default.
- W2080759927 hasRelatedWork W2154793587 @default.
- W2080759927 hasRelatedWork W2416943787 @default.
- W2080759927 hasRelatedWork W2959276766 @default.
- W2080759927 hasRelatedWork W2961085424 @default.
- W2080759927 hasRelatedWork W3074294383 @default.
- W2080759927 hasRelatedWork W3190566045 @default.
- W2080759927 hasRelatedWork W4206669594 @default.
- W2080759927 hasRelatedWork W4319083788 @default.
- W2080759927 hasRelatedWork W4362598698 @default.
- W2080759927 hasRelatedWork W4378771262 @default.
- W2080759927 hasVolume "3" @default.
- W2080759927 isParatext "false" @default.
- W2080759927 isRetracted "false" @default.
- W2080759927 magId "2080759927" @default.
- W2080759927 workType "article" @default.