Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080785753> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2080785753 abstract "Several studies have demonstrated the effectiveness of the wavelet, decomposition as a tool for reducing large amounts of data down to compact, wavelet synopses that can be used to obtain fast, accurate approximate answers to user queries. While conventional wavelet synopses are based on greedily minimizing the overall root-mean-squared (i.e., L2-norm) error in the data approximation, recent work has demonstrated that such synopses can suffer from important problems, including severe bias and wide variance in the quality of the data reconstruction, and lack of non-trivial guarantees for individual approximate answers. As a result, probabilistic thresholding schemes have been recently proposed as a means of building wavelet synopses that try to probabilistically control other approximation-error metrics, such as the maximum relative error in data-value reconstruction, which is arguably the most important for approximate query answers and meaningful error guarantees.One of the main open problems posed by this earlier work is whether it is possible to design efficient deterministic wavelet-thresholding algorithms for minimizing non-L2 error metrics that are relevant to approximate query processing systems, such as maximum relative or maximum absolute error. Obviously, such algorithms can guarantee better wavelet synopses and avoid the pitfalls of probabilistic techniques (e.g., bad coin-flip sequences) leading to poor solutions. In this paper, we address this problem and propose novel, computationally efficient schemes for deterministic wavelet thresholding with the objective of optimizing maximum-error metrics. We introduce an optimal low polynomial-time algorithm for one-dimensional wavelet thresholding--our algorithm is based on a new Dynamic-Programming (DP) formulation, and can be employed to minimize the maximum relative or absolute error in the data reconstruction. Unfortunately, directly extending our one-dimensional DP algorithm to multi-dimensional wavelets results in a super-exponential increase in time complexity with the data dimensionality. Thus, we also introduce novel, polynomial-time approximation schemes (with tunable approximation guarantees for the target maximum-error metric) for deterministic wavelet thresholding in multiple dimensions." @default.
- W2080785753 created "2016-06-24" @default.
- W2080785753 creator A5023079617 @default.
- W2080785753 creator A5029407896 @default.
- W2080785753 date "2004-06-14" @default.
- W2080785753 modified "2023-10-16" @default.
- W2080785753 title "Deterministic wavelet thresholding for maximum-error metrics" @default.
- W2080785753 cites W1966247000 @default.
- W2080785753 cites W2018666252 @default.
- W2080785753 cites W2021850646 @default.
- W2080785753 cites W2038122417 @default.
- W2080785753 cites W2112056262 @default.
- W2080785753 cites W2122731071 @default.
- W2080785753 cites W2164363676 @default.
- W2080785753 cites W2296677182 @default.
- W2080785753 cites W4231287357 @default.
- W2080785753 cites W4231428347 @default.
- W2080785753 cites W4232471770 @default.
- W2080785753 cites W4234667859 @default.
- W2080785753 cites W4241185933 @default.
- W2080785753 doi "https://doi.org/10.1145/1055558.1055582" @default.
- W2080785753 hasPublicationYear "2004" @default.
- W2080785753 type Work @default.
- W2080785753 sameAs 2080785753 @default.
- W2080785753 citedByCount "88" @default.
- W2080785753 countsByYear W20807857532012 @default.
- W2080785753 countsByYear W20807857532013 @default.
- W2080785753 countsByYear W20807857532014 @default.
- W2080785753 countsByYear W20807857532016 @default.
- W2080785753 countsByYear W20807857532017 @default.
- W2080785753 countsByYear W20807857532018 @default.
- W2080785753 countsByYear W20807857532019 @default.
- W2080785753 countsByYear W20807857532020 @default.
- W2080785753 countsByYear W20807857532021 @default.
- W2080785753 countsByYear W20807857532022 @default.
- W2080785753 crossrefType "proceedings-article" @default.
- W2080785753 hasAuthorship W2080785753A5023079617 @default.
- W2080785753 hasAuthorship W2080785753A5029407896 @default.
- W2080785753 hasConcept C11413529 @default.
- W2080785753 hasConcept C115961682 @default.
- W2080785753 hasConcept C153180895 @default.
- W2080785753 hasConcept C154945302 @default.
- W2080785753 hasConcept C191178318 @default.
- W2080785753 hasConcept C196216189 @default.
- W2080785753 hasConcept C41008148 @default.
- W2080785753 hasConcept C47432892 @default.
- W2080785753 hasConceptScore W2080785753C11413529 @default.
- W2080785753 hasConceptScore W2080785753C115961682 @default.
- W2080785753 hasConceptScore W2080785753C153180895 @default.
- W2080785753 hasConceptScore W2080785753C154945302 @default.
- W2080785753 hasConceptScore W2080785753C191178318 @default.
- W2080785753 hasConceptScore W2080785753C196216189 @default.
- W2080785753 hasConceptScore W2080785753C41008148 @default.
- W2080785753 hasConceptScore W2080785753C47432892 @default.
- W2080785753 hasLocation W20807857531 @default.
- W2080785753 hasOpenAccess W2080785753 @default.
- W2080785753 hasPrimaryLocation W20807857531 @default.
- W2080785753 hasRelatedWork W1921307661 @default.
- W2080785753 hasRelatedWork W2033000528 @default.
- W2080785753 hasRelatedWork W2160069326 @default.
- W2080785753 hasRelatedWork W2184989849 @default.
- W2080785753 hasRelatedWork W2186577434 @default.
- W2080785753 hasRelatedWork W2541950815 @default.
- W2080785753 hasRelatedWork W2545774184 @default.
- W2080785753 hasRelatedWork W2792520941 @default.
- W2080785753 hasRelatedWork W3175271736 @default.
- W2080785753 hasRelatedWork W51958864 @default.
- W2080785753 isParatext "false" @default.
- W2080785753 isRetracted "false" @default.
- W2080785753 magId "2080785753" @default.
- W2080785753 workType "article" @default.