Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080823062> ?p ?o ?g. }
- W2080823062 endingPage "S7" @default.
- W2080823062 startingPage "S2" @default.
- W2080823062 abstract "▶ We measured radiotracer diffusivities of all components in a Pd 43 Cu 27 Ni 10 P 20 melt. ▶ We see a vast decoupling between the diffusivity of Pd and of the smaller components at T g . ▶ We see no decoupling between Pd diffusion and viscous flow. ▶ The Stokes-Einstein equations holds for Pd in the hole supercooled range. ▶ Pd forms a slow subsystem. We review radiotracer diffusion and isotope measurements in bulk glass forming alloys from the glassy state to the equilibrium melt and compare diffusion and viscous flow. In the glassy as well as in the deeply supercooled state below the critical temperature T c , where the mode coupling theory predicts a freezing-in of liquid-like motion, very small isotope effects indicate a highly collective hopping mechanism. Not only in the glassy state but also in the supercooled state below T c the temperature dependence of diffusion is Arrhenius-like with an effective activation enthalpy. A clear decoupling takes place between the diffusivities of the individual components of the alloys and between time scales related to diffusive transport and viscous flow. While the component decoupling is small for the smaller components a vast decoupling of more than 4 orders of magnitude is observed in Pd–Cu–Ni–P alloys between the diffusivity of the large majority component Pd and of the smaller components at the glass transition temperature T g . The diffusivities of all components merge close to the critical temperature T c of mode coupling theory. Above T c , the onset of liquid-like motion is directly evidenced by a gradual drop of the effective activation energy. This strongly supports the mode coupling scenario. The isotope effect measurements show atomic transport up to the equilibrium melt to be far away from the regime of uncorrelated binary collisions. For Pd, in contrast to the behavior of single component molecular glass formers, the Stokes–Einstein equation even holds in the entire temperature range below T c over at least 14 orders of magnitude. Apparently, the majority component Pd forms a slow subsystem in which the other elements move fast. Rearrangement of the Pd atoms thus determines the viscous flow behavior. The decoupling of atomic mobility seems to arise from a complex interplay between chemical short order and atomic size effects that gets more pronounced on approaching the glass transition temperature. The ability of the bulk glass forming alloys to form a slow subsystem in the liquid state appears to be a key to the understanding of their excellent glass forming properties." @default.
- W2080823062 created "2016-06-24" @default.
- W2080823062 creator A5010196668 @default.
- W2080823062 creator A5031853093 @default.
- W2080823062 creator A5036452901 @default.
- W2080823062 creator A5046296463 @default.
- W2080823062 creator A5053238545 @default.
- W2080823062 date "2011-06-01" @default.
- W2080823062 modified "2023-09-24" @default.
- W2080823062 title "Diffusion and viscous flow in bulk glass forming alloys" @default.
- W2080823062 cites W1483142286 @default.
- W2080823062 cites W1610677214 @default.
- W2080823062 cites W1621485507 @default.
- W2080823062 cites W1634524438 @default.
- W2080823062 cites W1634940971 @default.
- W2080823062 cites W1654500710 @default.
- W2080823062 cites W1963631770 @default.
- W2080823062 cites W1964254287 @default.
- W2080823062 cites W1964522841 @default.
- W2080823062 cites W1964851862 @default.
- W2080823062 cites W1974002122 @default.
- W2080823062 cites W1978608274 @default.
- W2080823062 cites W1990295778 @default.
- W2080823062 cites W1993967147 @default.
- W2080823062 cites W1994774534 @default.
- W2080823062 cites W1995471907 @default.
- W2080823062 cites W2007342865 @default.
- W2080823062 cites W2010417320 @default.
- W2080823062 cites W2013926318 @default.
- W2080823062 cites W2014827001 @default.
- W2080823062 cites W2015630865 @default.
- W2080823062 cites W2015727757 @default.
- W2080823062 cites W2023063540 @default.
- W2080823062 cites W2032282988 @default.
- W2080823062 cites W2033052676 @default.
- W2080823062 cites W203419216 @default.
- W2080823062 cites W2039088836 @default.
- W2080823062 cites W2040355505 @default.
- W2080823062 cites W2042359334 @default.
- W2080823062 cites W2044753141 @default.
- W2080823062 cites W2045539677 @default.
- W2080823062 cites W2047093015 @default.
- W2080823062 cites W2050945279 @default.
- W2080823062 cites W2053590589 @default.
- W2080823062 cites W2057835459 @default.
- W2080823062 cites W2058065076 @default.
- W2080823062 cites W2061483421 @default.
- W2080823062 cites W2061980986 @default.
- W2080823062 cites W2073630248 @default.
- W2080823062 cites W2074177940 @default.
- W2080823062 cites W2086501952 @default.
- W2080823062 cites W2088918906 @default.
- W2080823062 cites W2092677638 @default.
- W2080823062 cites W2111237180 @default.
- W2080823062 cites W2118809868 @default.
- W2080823062 cites W2120149413 @default.
- W2080823062 cites W2121772933 @default.
- W2080823062 cites W2126535862 @default.
- W2080823062 cites W2133307708 @default.
- W2080823062 cites W2137841785 @default.
- W2080823062 cites W2142866067 @default.
- W2080823062 cites W2144835432 @default.
- W2080823062 cites W2158836063 @default.
- W2080823062 cites W2170848877 @default.
- W2080823062 cites W2502631458 @default.
- W2080823062 cites W2508927120 @default.
- W2080823062 doi "https://doi.org/10.1016/j.jallcom.2010.11.123" @default.
- W2080823062 hasPublicationYear "2011" @default.
- W2080823062 type Work @default.
- W2080823062 sameAs 2080823062 @default.
- W2080823062 citedByCount "7" @default.
- W2080823062 countsByYear W20808230622012 @default.
- W2080823062 countsByYear W20808230622015 @default.
- W2080823062 countsByYear W20808230622017 @default.
- W2080823062 countsByYear W20808230622018 @default.
- W2080823062 countsByYear W20808230622023 @default.
- W2080823062 crossrefType "journal-article" @default.
- W2080823062 hasAuthorship W2080823062A5010196668 @default.
- W2080823062 hasAuthorship W2080823062A5031853093 @default.
- W2080823062 hasAuthorship W2080823062A5036452901 @default.
- W2080823062 hasAuthorship W2080823062A5046296463 @default.
- W2080823062 hasAuthorship W2080823062A5053238545 @default.
- W2080823062 hasConcept C112964491 @default.
- W2080823062 hasConcept C121332964 @default.
- W2080823062 hasConcept C122865956 @default.
- W2080823062 hasConcept C127413603 @default.
- W2080823062 hasConcept C133731056 @default.
- W2080823062 hasConcept C147789679 @default.
- W2080823062 hasConcept C159985019 @default.
- W2080823062 hasConcept C185592680 @default.
- W2080823062 hasConcept C192562407 @default.
- W2080823062 hasConcept C205606062 @default.
- W2080823062 hasConcept C26873012 @default.
- W2080823062 hasConcept C3288061 @default.
- W2080823062 hasConcept C37668627 @default.
- W2080823062 hasConcept C521977710 @default.
- W2080823062 hasConcept C86183883 @default.
- W2080823062 hasConcept C95121573 @default.