Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080861637> ?p ?o ?g. }
- W2080861637 endingPage "12270" @default.
- W2080861637 startingPage "12257" @default.
- W2080861637 abstract "Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton- ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge. Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton- ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge." @default.
- W2080861637 created "2016-06-24" @default.
- W2080861637 creator A5005766947 @default.
- W2080861637 creator A5008200041 @default.
- W2080861637 creator A5017320907 @default.
- W2080861637 creator A5036708850 @default.
- W2080861637 creator A5036790547 @default.
- W2080861637 creator A5079551707 @default.
- W2080861637 creator A5080498077 @default.
- W2080861637 date "2011-04-01" @default.
- W2080861637 modified "2023-10-14" @default.
- W2080861637 title "STIM1 and STIM2 Are Located in the Acidic Ca2+ Stores and Associates with Orai1 upon Depletion of the Acidic Stores in Human Platelets" @default.
- W2080861637 cites W1491234920 @default.
- W2080861637 cites W1499927580 @default.
- W2080861637 cites W1520273710 @default.
- W2080861637 cites W1586649084 @default.
- W2080861637 cites W1600302021 @default.
- W2080861637 cites W1613210651 @default.
- W2080861637 cites W1641450356 @default.
- W2080861637 cites W1859398825 @default.
- W2080861637 cites W1889796806 @default.
- W2080861637 cites W1953311373 @default.
- W2080861637 cites W1964549513 @default.
- W2080861637 cites W1967766973 @default.
- W2080861637 cites W1968020512 @default.
- W2080861637 cites W1970641636 @default.
- W2080861637 cites W1973819000 @default.
- W2080861637 cites W1974460908 @default.
- W2080861637 cites W1978593035 @default.
- W2080861637 cites W1990708583 @default.
- W2080861637 cites W1995214889 @default.
- W2080861637 cites W2000845667 @default.
- W2080861637 cites W2001917660 @default.
- W2080861637 cites W2003189203 @default.
- W2080861637 cites W2012347765 @default.
- W2080861637 cites W2012471725 @default.
- W2080861637 cites W2015166032 @default.
- W2080861637 cites W2023335322 @default.
- W2080861637 cites W2028065205 @default.
- W2080861637 cites W2028226397 @default.
- W2080861637 cites W2028649950 @default.
- W2080861637 cites W2029590802 @default.
- W2080861637 cites W2032091955 @default.
- W2080861637 cites W2033452983 @default.
- W2080861637 cites W2035501441 @default.
- W2080861637 cites W2039622526 @default.
- W2080861637 cites W2040549631 @default.
- W2080861637 cites W2054723193 @default.
- W2080861637 cites W2056042025 @default.
- W2080861637 cites W2057348460 @default.
- W2080861637 cites W2060892586 @default.
- W2080861637 cites W2075879741 @default.
- W2080861637 cites W2076442408 @default.
- W2080861637 cites W2078391920 @default.
- W2080861637 cites W2082366270 @default.
- W2080861637 cites W2087933553 @default.
- W2080861637 cites W2087967725 @default.
- W2080861637 cites W2088583398 @default.
- W2080861637 cites W2095423071 @default.
- W2080861637 cites W2101586949 @default.
- W2080861637 cites W2109627824 @default.
- W2080861637 cites W2111741341 @default.
- W2080861637 cites W2114033090 @default.
- W2080861637 cites W2136353421 @default.
- W2080861637 cites W2137036914 @default.
- W2080861637 cites W2141260882 @default.
- W2080861637 cites W2144344199 @default.
- W2080861637 cites W2145686156 @default.
- W2080861637 cites W2145789165 @default.
- W2080861637 cites W2163760215 @default.
- W2080861637 cites W2165231575 @default.
- W2080861637 cites W2166087115 @default.
- W2080861637 cites W2166547308 @default.
- W2080861637 cites W2206236475 @default.
- W2080861637 cites W2412223496 @default.
- W2080861637 cites W4293247451 @default.
- W2080861637 doi "https://doi.org/10.1074/jbc.m110.190694" @default.
- W2080861637 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3069429" @default.
- W2080861637 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21321120" @default.
- W2080861637 hasPublicationYear "2011" @default.
- W2080861637 type Work @default.
- W2080861637 sameAs 2080861637 @default.
- W2080861637 citedByCount "72" @default.
- W2080861637 countsByYear W20808616372012 @default.
- W2080861637 countsByYear W20808616372013 @default.
- W2080861637 countsByYear W20808616372014 @default.
- W2080861637 countsByYear W20808616372015 @default.
- W2080861637 countsByYear W20808616372016 @default.
- W2080861637 countsByYear W20808616372017 @default.
- W2080861637 countsByYear W20808616372018 @default.
- W2080861637 countsByYear W20808616372019 @default.
- W2080861637 countsByYear W20808616372020 @default.
- W2080861637 countsByYear W20808616372021 @default.
- W2080861637 countsByYear W20808616372022 @default.
- W2080861637 countsByYear W20808616372023 @default.
- W2080861637 crossrefType "journal-article" @default.
- W2080861637 hasAuthorship W2080861637A5005766947 @default.
- W2080861637 hasAuthorship W2080861637A5008200041 @default.