Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080880014> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2080880014 abstract "Amyloids are proteins capable of forming fibrils whose intramolecular contact sites assume densely packed zipper pattern. Their oligomers can underlie serious diseases, e.g. Alzheimer's and Parkinson's diseases. Recent studies show that short segments of aminoacids can be responsible for amyloidogenic properties of a protein. A few hundreds of such peptides have been experimentally found but experimental testing of all candidates is currently not feasible. Here we propose an original machine learning method for classification of aminoacid sequences, based on discovering a segment with a discriminative pattern of site-specific co-occurrences between sequence elements. The pattern is based on the positions of residues with correlated occurrence over a sliding window of a specified length. The algorithm first recognizes the most relevant training segment in each positive training instance. Then the classification is based on maximal distances between co-occurrence matrix of the relevant segments in positive training sequences and the matrix from negative training segments. The method was applied for studying sequences of aminoacids with regard to their amyloidogenic properties.Our method was first trained on available datasets of hexapeptides with the amyloidogenic classification, using 5 or 6-residue sliding windows. Depending on the choice of training and testing datasets, the area under ROC curve obtained the value up to 0.80 for experimental, and 0.95 for computationally generated (with 3D profile method) datasets. Importantly, the results on 5-residue segments were not significantly worse, although the classification required that algorithm first recognized the most relevant training segments. The dataset of long sequences, such as sup35 prion and a few other amyloid proteins, were applied to test the method and gave encouraging results. Our web tool FISH Amyloid was trained on all available experimental data 4-10 residues long, offers prediction of amyloidogenic segments in protein sequences.We proposed a new original classification method which recognizes co-occurrence patterns in sequences. The method reveals characteristic classification pattern of the data and finds the segments where its scoring is the strongest, also in long training sequences. Applied to the problem of amyloidogenic segments recognition, it showed a good potential for classification problems in bioinformatics." @default.
- W2080880014 created "2016-06-24" @default.
- W2080880014 creator A5034143489 @default.
- W2080880014 creator A5090478813 @default.
- W2080880014 date "2014-02-24" @default.
- W2080880014 modified "2023-10-11" @default.
- W2080880014 title "FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids" @default.
- W2080880014 cites W1972798923 @default.
- W2080880014 cites W1974924282 @default.
- W2080880014 cites W1976103641 @default.
- W2080880014 cites W2003926535 @default.
- W2080880014 cites W2009890105 @default.
- W2080880014 cites W2027105865 @default.
- W2080880014 cites W2027839322 @default.
- W2080880014 cites W2043876754 @default.
- W2080880014 cites W2078067526 @default.
- W2080880014 cites W2086272648 @default.
- W2080880014 cites W2087357689 @default.
- W2080880014 cites W2100630099 @default.
- W2080880014 cites W2105598295 @default.
- W2080880014 cites W2105908180 @default.
- W2080880014 cites W2116633256 @default.
- W2080880014 cites W2117537971 @default.
- W2080880014 cites W2129507901 @default.
- W2080880014 cites W2133425057 @default.
- W2080880014 cites W2133990480 @default.
- W2080880014 cites W2135815512 @default.
- W2080880014 cites W2137209317 @default.
- W2080880014 cites W2138259999 @default.
- W2080880014 cites W2141690555 @default.
- W2080880014 cites W2148472024 @default.
- W2080880014 cites W2157873167 @default.
- W2080880014 cites W2158266834 @default.
- W2080880014 cites W2161163255 @default.
- W2080880014 cites W2163210644 @default.
- W2080880014 cites W2169316993 @default.
- W2080880014 doi "https://doi.org/10.1186/1471-2105-15-54" @default.
- W2080880014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3941796" @default.
- W2080880014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24564523" @default.
- W2080880014 hasPublicationYear "2014" @default.
- W2080880014 type Work @default.
- W2080880014 sameAs 2080880014 @default.
- W2080880014 citedByCount "61" @default.
- W2080880014 countsByYear W20808800142014 @default.
- W2080880014 countsByYear W20808800142015 @default.
- W2080880014 countsByYear W20808800142016 @default.
- W2080880014 countsByYear W20808800142017 @default.
- W2080880014 countsByYear W20808800142018 @default.
- W2080880014 countsByYear W20808800142019 @default.
- W2080880014 countsByYear W20808800142020 @default.
- W2080880014 countsByYear W20808800142021 @default.
- W2080880014 countsByYear W20808800142022 @default.
- W2080880014 countsByYear W20808800142023 @default.
- W2080880014 crossrefType "journal-article" @default.
- W2080880014 hasAuthorship W2080880014A5034143489 @default.
- W2080880014 hasAuthorship W2080880014A5090478813 @default.
- W2080880014 hasBestOaLocation W20808800141 @default.
- W2080880014 hasConcept C12267149 @default.
- W2080880014 hasConcept C153180895 @default.
- W2080880014 hasConcept C154945302 @default.
- W2080880014 hasConcept C164085508 @default.
- W2080880014 hasConcept C41008148 @default.
- W2080880014 hasConcept C60644358 @default.
- W2080880014 hasConcept C70721500 @default.
- W2080880014 hasConcept C86803240 @default.
- W2080880014 hasConcept C97931131 @default.
- W2080880014 hasConceptScore W2080880014C12267149 @default.
- W2080880014 hasConceptScore W2080880014C153180895 @default.
- W2080880014 hasConceptScore W2080880014C154945302 @default.
- W2080880014 hasConceptScore W2080880014C164085508 @default.
- W2080880014 hasConceptScore W2080880014C41008148 @default.
- W2080880014 hasConceptScore W2080880014C60644358 @default.
- W2080880014 hasConceptScore W2080880014C70721500 @default.
- W2080880014 hasConceptScore W2080880014C86803240 @default.
- W2080880014 hasConceptScore W2080880014C97931131 @default.
- W2080880014 hasIssue "1" @default.
- W2080880014 hasLocation W20808800141 @default.
- W2080880014 hasLocation W20808800142 @default.
- W2080880014 hasLocation W20808800143 @default.
- W2080880014 hasLocation W20808800144 @default.
- W2080880014 hasOpenAccess W2080880014 @default.
- W2080880014 hasPrimaryLocation W20808800141 @default.
- W2080880014 hasRelatedWork W1652783584 @default.
- W2080880014 hasRelatedWork W1990254706 @default.
- W2080880014 hasRelatedWork W2024160000 @default.
- W2080880014 hasRelatedWork W2404514746 @default.
- W2080880014 hasRelatedWork W2743258233 @default.
- W2080880014 hasRelatedWork W2773500201 @default.
- W2080880014 hasRelatedWork W4287995534 @default.
- W2080880014 hasRelatedWork W74886973 @default.
- W2080880014 hasRelatedWork W82679236 @default.
- W2080880014 hasRelatedWork W2034357144 @default.
- W2080880014 hasVolume "15" @default.
- W2080880014 isParatext "false" @default.
- W2080880014 isRetracted "false" @default.
- W2080880014 magId "2080880014" @default.
- W2080880014 workType "article" @default.