Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080932170> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2080932170 endingPage "392" @default.
- W2080932170 startingPage "379" @default.
- W2080932170 abstract "The need for precision components and parts in manufacturing industries has bought an increase in the need for finishing operations that can satisfy this demand. In addition, there is a continuous demand for hard and tough materials that can withstand varying stress conditions to ensure prolonged service life of components and parts. The need to process these materials economically so as to meet stringent product quality requirements (generally expressed as composite of a family of properties, so-called multiple response characteristics) has become a real challenge for researchers and practitioners in manufacturing industries. Grinding has the potential to meet these critical needs for accurate and economic means of finishing parts, and generate the required surface topography. Despite this importance and popularity, grinding still remains one of the most difficult and least-understood processes due to lack of adequate inferential mechanistic and analytical multivariate models, for varied industrial situations. In this context, data-driven inferential linear or nonlinear multiple statistical regression, and artificial neural network modelling have become increasingly popular techniques for complex industrial grinding processes. Unfortunately, these techniques are either proposed and implemented in isolation or presented as a comparative evaluation grinding case study. A systematic solution methodology for inferential multivariate modelling, which addresses the different phases, starting from preliminary linear random x-case multivariate regression model, hypothesis testing of influence of addition of higher-order nonlinear terms to the adequate linear model (or presence of nonlinearity), and subsequent selection of a suitable nonlinear artificial neural network-based multivariate model, is lacking. In view of the above-mentioned conditional requirements, this paper attempts to provide a systematic methodology to develop a multivariate linear regression model, hypothesis testing for the influence of nonlinear terms to linear model, and accordingly selection of a suitable artificial neural network-based inferential model with improved prediction accuracy and control of grinding behaviour. The methodology suggests the use of various statistical techniques, such as Q–Q (quantile–quantile) plotting, data transformation, data standardization, outlier detection test, model adequacy test, model cross-validation and generalization. The suitability of the recommended methodology is illustrated with the help of an engine cylinder liner grinding (honing) case example, in a leading automotive manufacturing unit in India." @default.
- W2080932170 created "2016-06-24" @default.
- W2080932170 creator A5016386725 @default.
- W2080932170 creator A5042086439 @default.
- W2080932170 date "2008-01-01" @default.
- W2080932170 modified "2023-09-24" @default.
- W2080932170 title "A systematic solution methodology for inferential multivariate modelling of industrial grinding process" @default.
- W2080932170 cites W129305155 @default.
- W2080932170 cites W1498436455 @default.
- W2080932170 cites W1540596182 @default.
- W2080932170 cites W1595740553 @default.
- W2080932170 cites W1969094797 @default.
- W2080932170 cites W1970551337 @default.
- W2080932170 cites W1975248425 @default.
- W2080932170 cites W1983100122 @default.
- W2080932170 cites W1994723463 @default.
- W2080932170 cites W2000836282 @default.
- W2080932170 cites W2011112002 @default.
- W2080932170 cites W2015393217 @default.
- W2080932170 cites W2031939792 @default.
- W2080932170 cites W2037671825 @default.
- W2080932170 cites W2041280856 @default.
- W2080932170 cites W2060908334 @default.
- W2080932170 cites W2063061049 @default.
- W2080932170 cites W2073147877 @default.
- W2080932170 cites W2088169690 @default.
- W2080932170 cites W2140684913 @default.
- W2080932170 cites W2154526890 @default.
- W2080932170 cites W2795512730 @default.
- W2080932170 cites W2797532987 @default.
- W2080932170 cites W2912565176 @default.
- W2080932170 cites W3035751571 @default.
- W2080932170 cites W578914799 @default.
- W2080932170 doi "https://doi.org/10.1016/j.jmatprotec.2007.05.044" @default.
- W2080932170 hasPublicationYear "2008" @default.
- W2080932170 type Work @default.
- W2080932170 sameAs 2080932170 @default.
- W2080932170 citedByCount "9" @default.
- W2080932170 countsByYear W20809321702012 @default.
- W2080932170 countsByYear W20809321702013 @default.
- W2080932170 crossrefType "journal-article" @default.
- W2080932170 hasAuthorship W2080932170A5016386725 @default.
- W2080932170 hasAuthorship W2080932170A5042086439 @default.
- W2080932170 hasConcept C111919701 @default.
- W2080932170 hasConcept C119857082 @default.
- W2080932170 hasConcept C121332964 @default.
- W2080932170 hasConcept C127413603 @default.
- W2080932170 hasConcept C13736549 @default.
- W2080932170 hasConcept C151730666 @default.
- W2080932170 hasConcept C158622935 @default.
- W2080932170 hasConcept C161584116 @default.
- W2080932170 hasConcept C21880701 @default.
- W2080932170 hasConcept C2777571299 @default.
- W2080932170 hasConcept C2779343474 @default.
- W2080932170 hasConcept C41008148 @default.
- W2080932170 hasConcept C50644808 @default.
- W2080932170 hasConcept C62520636 @default.
- W2080932170 hasConcept C78519656 @default.
- W2080932170 hasConcept C86803240 @default.
- W2080932170 hasConcept C98045186 @default.
- W2080932170 hasConceptScore W2080932170C111919701 @default.
- W2080932170 hasConceptScore W2080932170C119857082 @default.
- W2080932170 hasConceptScore W2080932170C121332964 @default.
- W2080932170 hasConceptScore W2080932170C127413603 @default.
- W2080932170 hasConceptScore W2080932170C13736549 @default.
- W2080932170 hasConceptScore W2080932170C151730666 @default.
- W2080932170 hasConceptScore W2080932170C158622935 @default.
- W2080932170 hasConceptScore W2080932170C161584116 @default.
- W2080932170 hasConceptScore W2080932170C21880701 @default.
- W2080932170 hasConceptScore W2080932170C2777571299 @default.
- W2080932170 hasConceptScore W2080932170C2779343474 @default.
- W2080932170 hasConceptScore W2080932170C41008148 @default.
- W2080932170 hasConceptScore W2080932170C50644808 @default.
- W2080932170 hasConceptScore W2080932170C62520636 @default.
- W2080932170 hasConceptScore W2080932170C78519656 @default.
- W2080932170 hasConceptScore W2080932170C86803240 @default.
- W2080932170 hasConceptScore W2080932170C98045186 @default.
- W2080932170 hasIssue "1-3" @default.
- W2080932170 hasLocation W20809321701 @default.
- W2080932170 hasOpenAccess W2080932170 @default.
- W2080932170 hasPrimaryLocation W20809321701 @default.
- W2080932170 hasRelatedWork W1967882366 @default.
- W2080932170 hasRelatedWork W2055785624 @default.
- W2080932170 hasRelatedWork W2129916234 @default.
- W2080932170 hasRelatedWork W2371928941 @default.
- W2080932170 hasRelatedWork W2386387936 @default.
- W2080932170 hasRelatedWork W2392808951 @default.
- W2080932170 hasRelatedWork W2899084033 @default.
- W2080932170 hasRelatedWork W2899217644 @default.
- W2080932170 hasRelatedWork W2912632670 @default.
- W2080932170 hasRelatedWork W4306752486 @default.
- W2080932170 hasVolume "196" @default.
- W2080932170 isParatext "false" @default.
- W2080932170 isRetracted "false" @default.
- W2080932170 magId "2080932170" @default.
- W2080932170 workType "article" @default.