Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080938107> ?p ?o ?g. }
- W2080938107 endingPage "548" @default.
- W2080938107 startingPage "548" @default.
- W2080938107 abstract "<h3>Abstract</h3> The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help <i>ab initio</i> structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP and CAMEO experiments, and outperformed other state-of-the-art methods by at least 58.4% for the CASP 11&12 and 44.4% for the CAMEO targets in the top-<i>L</i> long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-<i>L</i>/5 long-range contact predictions. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library. <h3>Availability</h3> The training and testing data, standalone package, and the online server for TripletRes are available at https://zhanglab.ccmb.med.umich.edu/TripletRes/. <h3>Author Summary</h3> <i>Ab initio</i> protein folding has been a major unsolved problem in computational biology for more than half a century. Recent community-wide Critical Assessment of Structure Prediction (CASP) experiments have witnessed exciting progress on <i>ab initio</i> structure prediction, which was mainly powered by the boosting of contact-map prediction as the latter can be used as constraints to guide <i>ab initio</i> folding simulations. In this work, we proposed a new open-source deep-learning architecture, TripletRes, built on the residual convolutional neural networks for high-accuracy contact prediction. The large-scale benchmark and blind test results demonstrate significant advancement of the proposed methods over other approaches in predicting medium- and long-range contact-maps that are critical for guiding protein folding simulations. Detailed data analyses showed that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolutionary feature matrices which are directly extracted from whole-genome and metagenome databases and therefore minimize the information loss during the contact model training." @default.
- W2080938107 created "2016-06-24" @default.
- W2080938107 creator A5027284020 @default.
- W2080938107 creator A5041895846 @default.
- W2080938107 creator A5044253009 @default.
- W2080938107 creator A5088868390 @default.
- W2080938107 date "1999-08-01" @default.
- W2080938107 modified "2023-10-16" @default.
- W2080938107 title "Brain processing of capsaicin-induced secondary hyperalgesia: A functional MRI study" @default.
- W2080938107 cites W123790764 @default.
- W2080938107 cites W1604034037 @default.
- W2080938107 cites W1694363227 @default.
- W2080938107 cites W1764688055 @default.
- W2080938107 cites W1773001224 @default.
- W2080938107 cites W1843502981 @default.
- W2080938107 cites W1902361870 @default.
- W2080938107 cites W1966917756 @default.
- W2080938107 cites W1968280685 @default.
- W2080938107 cites W1982619039 @default.
- W2080938107 cites W1987192367 @default.
- W2080938107 cites W1990126819 @default.
- W2080938107 cites W1990285283 @default.
- W2080938107 cites W1995281588 @default.
- W2080938107 cites W1998869412 @default.
- W2080938107 cites W2006498376 @default.
- W2080938107 cites W2022898812 @default.
- W2080938107 cites W2033980432 @default.
- W2080938107 cites W2035577790 @default.
- W2080938107 cites W2047912148 @default.
- W2080938107 cites W2056541881 @default.
- W2080938107 cites W2058061634 @default.
- W2080938107 cites W2060012280 @default.
- W2080938107 cites W2075172228 @default.
- W2080938107 cites W2082904249 @default.
- W2080938107 cites W2085955270 @default.
- W2080938107 cites W2090202944 @default.
- W2080938107 cites W2092722873 @default.
- W2080938107 cites W2093366270 @default.
- W2080938107 cites W2111270512 @default.
- W2080938107 cites W2126855798 @default.
- W2080938107 cites W2132284897 @default.
- W2080938107 cites W2139285993 @default.
- W2080938107 cites W2141129310 @default.
- W2080938107 cites W2145264532 @default.
- W2080938107 cites W2168491653 @default.
- W2080938107 cites W2187456768 @default.
- W2080938107 cites W2309422288 @default.
- W2080938107 cites W2409860536 @default.
- W2080938107 cites W87578060 @default.
- W2080938107 doi "https://doi.org/10.1212/wnl.53.3.548" @default.
- W2080938107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10449119" @default.
- W2080938107 hasPublicationYear "1999" @default.
- W2080938107 type Work @default.
- W2080938107 sameAs 2080938107 @default.
- W2080938107 citedByCount "183" @default.
- W2080938107 countsByYear W20809381072012 @default.
- W2080938107 countsByYear W20809381072013 @default.
- W2080938107 countsByYear W20809381072014 @default.
- W2080938107 countsByYear W20809381072015 @default.
- W2080938107 countsByYear W20809381072016 @default.
- W2080938107 countsByYear W20809381072017 @default.
- W2080938107 countsByYear W20809381072018 @default.
- W2080938107 countsByYear W20809381072019 @default.
- W2080938107 countsByYear W20809381072020 @default.
- W2080938107 countsByYear W20809381072021 @default.
- W2080938107 crossrefType "journal-article" @default.
- W2080938107 hasAuthorship W2080938107A5027284020 @default.
- W2080938107 hasAuthorship W2080938107A5041895846 @default.
- W2080938107 hasAuthorship W2080938107A5044253009 @default.
- W2080938107 hasAuthorship W2080938107A5088868390 @default.
- W2080938107 hasConcept C121332964 @default.
- W2080938107 hasConcept C154945302 @default.
- W2080938107 hasConcept C18051474 @default.
- W2080938107 hasConcept C41008148 @default.
- W2080938107 hasConcept C46141821 @default.
- W2080938107 hasConcept C47701112 @default.
- W2080938107 hasConcept C66153294 @default.
- W2080938107 hasConcept C70721500 @default.
- W2080938107 hasConcept C81363708 @default.
- W2080938107 hasConcept C86803240 @default.
- W2080938107 hasConceptScore W2080938107C121332964 @default.
- W2080938107 hasConceptScore W2080938107C154945302 @default.
- W2080938107 hasConceptScore W2080938107C18051474 @default.
- W2080938107 hasConceptScore W2080938107C41008148 @default.
- W2080938107 hasConceptScore W2080938107C46141821 @default.
- W2080938107 hasConceptScore W2080938107C47701112 @default.
- W2080938107 hasConceptScore W2080938107C66153294 @default.
- W2080938107 hasConceptScore W2080938107C70721500 @default.
- W2080938107 hasConceptScore W2080938107C81363708 @default.
- W2080938107 hasConceptScore W2080938107C86803240 @default.
- W2080938107 hasIssue "3" @default.
- W2080938107 hasLocation W20809381071 @default.
- W2080938107 hasLocation W20809381072 @default.
- W2080938107 hasOpenAccess W2080938107 @default.
- W2080938107 hasPrimaryLocation W20809381071 @default.
- W2080938107 hasRelatedWork W1888349473 @default.
- W2080938107 hasRelatedWork W2058542300 @default.
- W2080938107 hasRelatedWork W2136856901 @default.