Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080953913> ?p ?o ?g. }
- W2080953913 endingPage "3624" @default.
- W2080953913 startingPage "3611" @default.
- W2080953913 abstract "Particle swarm optimization (PSO) is introduced to implement a new constructive learning algorithm for training generalized cellular neural networks (GCNNs) for the identification of spatio-temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimized using a particle swarm optimizer. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to refine and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modeling framework to a spatio-temporal evolutionary system identification problem." @default.
- W2080953913 created "2016-06-24" @default.
- W2080953913 creator A5026841543 @default.
- W2080953913 creator A5034885233 @default.
- W2080953913 date "2008-12-01" @default.
- W2080953913 modified "2023-09-23" @default.
- W2080953913 title "GENERALIZED CELLULAR NEURAL NETWORKS (GCNNs) CONSTRUCTED USING PARTICLE SWARM OPTIMIZATION FOR SPATIO-TEMPORAL EVOLUTIONARY PATTERN IDENTIFICATION" @default.
- W2080953913 cites W1570173134 @default.
- W2080953913 cites W1965901723 @default.
- W2080953913 cites W1984373218 @default.
- W2080953913 cites W1985975093 @default.
- W2080953913 cites W1987066381 @default.
- W2080953913 cites W1989229469 @default.
- W2080953913 cites W2008320588 @default.
- W2080953913 cites W2009848927 @default.
- W2080953913 cites W2025831660 @default.
- W2080953913 cites W2034476467 @default.
- W2080953913 cites W2035100132 @default.
- W2080953913 cites W2044692866 @default.
- W2080953913 cites W2044828368 @default.
- W2080953913 cites W2055470559 @default.
- W2080953913 cites W2055605337 @default.
- W2080953913 cites W2056717940 @default.
- W2080953913 cites W2065148753 @default.
- W2080953913 cites W2074672836 @default.
- W2080953913 cites W2080320108 @default.
- W2080953913 cites W2084192127 @default.
- W2080953913 cites W2091319525 @default.
- W2080953913 cites W2091886411 @default.
- W2080953913 cites W2092587625 @default.
- W2080953913 cites W2098955183 @default.
- W2080953913 cites W2099111195 @default.
- W2080953913 cites W2099531242 @default.
- W2080953913 cites W2102380305 @default.
- W2080953913 cites W2102631020 @default.
- W2080953913 cites W2103048921 @default.
- W2080953913 cites W2114771311 @default.
- W2080953913 cites W2115763425 @default.
- W2080953913 cites W2117941247 @default.
- W2080953913 cites W2118840131 @default.
- W2080953913 cites W2122007981 @default.
- W2080953913 cites W2124214878 @default.
- W2080953913 cites W2127234432 @default.
- W2080953913 cites W2130416988 @default.
- W2080953913 cites W2133759363 @default.
- W2080953913 cites W2135277666 @default.
- W2080953913 cites W2137668463 @default.
- W2080953913 cites W2137889891 @default.
- W2080953913 cites W2141695047 @default.
- W2080953913 cites W2142544077 @default.
- W2080953913 cites W2151162785 @default.
- W2080953913 cites W2151693816 @default.
- W2080953913 cites W2160121923 @default.
- W2080953913 cites W2162654475 @default.
- W2080953913 cites W2167898623 @default.
- W2080953913 cites W2169245194 @default.
- W2080953913 cites W2171247088 @default.
- W2080953913 cites W2171925415 @default.
- W2080953913 cites W2993421702 @default.
- W2080953913 cites W4377077333 @default.
- W2080953913 doi "https://doi.org/10.1142/s0218127408022585" @default.
- W2080953913 hasPublicationYear "2008" @default.
- W2080953913 type Work @default.
- W2080953913 sameAs 2080953913 @default.
- W2080953913 citedByCount "16" @default.
- W2080953913 countsByYear W20809539132012 @default.
- W2080953913 countsByYear W20809539132013 @default.
- W2080953913 countsByYear W20809539132015 @default.
- W2080953913 countsByYear W20809539132016 @default.
- W2080953913 countsByYear W20809539132017 @default.
- W2080953913 countsByYear W20809539132018 @default.
- W2080953913 countsByYear W20809539132019 @default.
- W2080953913 crossrefType "journal-article" @default.
- W2080953913 hasAuthorship W2080953913A5026841543 @default.
- W2080953913 hasAuthorship W2080953913A5034885233 @default.
- W2080953913 hasBestOaLocation W20809539132 @default.
- W2080953913 hasConcept C111919701 @default.
- W2080953913 hasConcept C11413529 @default.
- W2080953913 hasConcept C116834253 @default.
- W2080953913 hasConcept C118038509 @default.
- W2080953913 hasConcept C119247159 @default.
- W2080953913 hasConcept C124101348 @default.
- W2080953913 hasConcept C126255220 @default.
- W2080953913 hasConcept C154945302 @default.
- W2080953913 hasConcept C159149176 @default.
- W2080953913 hasConcept C2778701210 @default.
- W2080953913 hasConcept C2780009758 @default.
- W2080953913 hasConcept C33923547 @default.
- W2080953913 hasConcept C41008148 @default.
- W2080953913 hasConcept C50644808 @default.
- W2080953913 hasConcept C57493831 @default.
- W2080953913 hasConcept C59822182 @default.
- W2080953913 hasConcept C85617194 @default.
- W2080953913 hasConcept C86803240 @default.
- W2080953913 hasConcept C98045186 @default.
- W2080953913 hasConceptScore W2080953913C111919701 @default.
- W2080953913 hasConceptScore W2080953913C11413529 @default.
- W2080953913 hasConceptScore W2080953913C116834253 @default.