Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080973789> ?p ?o ?g. }
- W2080973789 endingPage "105" @default.
- W2080973789 startingPage "71" @default.
- W2080973789 abstract "SUMMARY: The SW Indian and American-Antarctic Ridges are two of the world's slowest spreading ocean ridges (less than 1 cm a-l), making them the low end-members for rate of ocean ridge magma supply. Two-thirds of the rocks dredged at the numerous large offset transforms along the ridges are residual mantle peridotites. Gabbroic rocks, however, representing layer 3 and possible palaeo-magma chambers are rare. This suggests a highly segmented crustal structure, with anomalously thin crust near fracture zones that may consist of only a thin veneer of pillow basalt erupted over mantle peridotite. The dredged peridotites underwent high degrees of melting, spanning the range believed to produce abyssal basalt. Their depleted compositions show that the melt was almost entirely removed. At the same time, the spatially associated basalts have a large range of compositions, similar to those from the rift valleys, requiring extensive shallowlevel fractional crystallization. Since there is little evidence for magma chambers at these fracture zones, it is concluded that melts formed in the underlying mantle flowed laterally through the mantle beneath the crust towards a magmatic centre at the midpoint of an adjacent ridge segment. Magma was then subsequently intruded down the rift valley fissure system from the magmatic centre to erupt onto the fracture zone floor. Alternatively, the melt was drained from a mantle diapir beneath the midpoint of a ridge segment, prior to lateral flow of the residual peridotite beneath the ridge axis to the fracture zone. These processes suggest behaviour of the partially molten layer beneath ocean ridges analogous to Rayleigh-Taylor fluid instability, where a light less viscous fluid layer floating upwards in a denser medium goes unstable and drains at regularly spaced points into protrusions which rise rapidly to the surface. Evidence for such dynamically driven non-uniform melt flow in the mantle is seen in locally-abundant plagioclase peridotites, where the plagioclase crystallized from impregnated trapped melt. These rocks can contain up to 30% trapped melt, contrasting sharply with the typical abyssal peridotite which contains virtually none. Basalts erupted along these ridges provide a classic case of trace- and major-element decoupling during magma genesis. Despite trace-element and isotopic diversity, basalts from individual ridge segments were derived from primary magmas with similar majorelement compositions. These observations can be explained if melt flows locally through the depleted mantle at the end of melting towards the midpoint of a ridge segment. This would cause melts originating at different points in an initially heterogeneous mantle to migrate through and equilibrate with the same section of mantle immediately prior to segregation--which, for the most part, would homogenize the melt's major-element compositions. However, by virtue of the lever rule, this would have little effect on critical incompatible-trace-element or isotopic ratios of the migrating melts because of the very low incompatible-trace-element content of residual peridotite. Ocean ridges, then, appear to be marked by strings of regularly spaced volcanic centres overlying instability points in the partially molten upwelling asthenosphere much as has been postulated for arc volcanism and early continental rifting. Unlike arcs, the asthenosphere upwells to the base of the crust and the magmatic centres undergo continuous extension. Thus, large volcanoes are not constructed, and instead, ribbons of basaltic crust form parallel to the spreading direction. This is most evident at the SW Indian and American-Antarctic Ridges because of their highly attenuated magma supply. Where the magma supply is more robust and the magma chambers are correspondingly larger, the chambers may merge and eliminate the surficial morphological and chemical expression of punctuated magmatism at ocean ridges." @default.
- W2080973789 created "2016-06-24" @default.
- W2080973789 creator A5028488670 @default.
- W2080973789 date "1989-01-01" @default.
- W2080973789 modified "2023-10-14" @default.
- W2080973789 title "Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism" @default.
- W2080973789 cites W113677040 @default.
- W2080973789 cites W1533802092 @default.
- W2080973789 cites W1965192373 @default.
- W2080973789 cites W1965952060 @default.
- W2080973789 cites W1965973766 @default.
- W2080973789 cites W1966685022 @default.
- W2080973789 cites W1969086871 @default.
- W2080973789 cites W1973415708 @default.
- W2080973789 cites W1976788350 @default.
- W2080973789 cites W1980897730 @default.
- W2080973789 cites W1986094638 @default.
- W2080973789 cites W1990814837 @default.
- W2080973789 cites W1992535721 @default.
- W2080973789 cites W1993079962 @default.
- W2080973789 cites W1998915321 @default.
- W2080973789 cites W2002748313 @default.
- W2080973789 cites W2004783515 @default.
- W2080973789 cites W2005292145 @default.
- W2080973789 cites W2008953626 @default.
- W2080973789 cites W2010749247 @default.
- W2080973789 cites W2012687636 @default.
- W2080973789 cites W2015008469 @default.
- W2080973789 cites W2016268864 @default.
- W2080973789 cites W2016778781 @default.
- W2080973789 cites W2017647614 @default.
- W2080973789 cites W2019889640 @default.
- W2080973789 cites W2020047493 @default.
- W2080973789 cites W2023287259 @default.
- W2080973789 cites W2024219665 @default.
- W2080973789 cites W2024391937 @default.
- W2080973789 cites W2025778802 @default.
- W2080973789 cites W2027304176 @default.
- W2080973789 cites W2027777972 @default.
- W2080973789 cites W2028114657 @default.
- W2080973789 cites W2032584964 @default.
- W2080973789 cites W2038462514 @default.
- W2080973789 cites W2042374407 @default.
- W2080973789 cites W2045064243 @default.
- W2080973789 cites W2046461168 @default.
- W2080973789 cites W2048457570 @default.
- W2080973789 cites W2055025778 @default.
- W2080973789 cites W2060316073 @default.
- W2080973789 cites W2061513705 @default.
- W2080973789 cites W2062164233 @default.
- W2080973789 cites W2063636575 @default.
- W2080973789 cites W2063945760 @default.
- W2080973789 cites W2067121507 @default.
- W2080973789 cites W2067431079 @default.
- W2080973789 cites W2068981906 @default.
- W2080973789 cites W2071923290 @default.
- W2080973789 cites W2072313199 @default.
- W2080973789 cites W2072771716 @default.
- W2080973789 cites W2074072796 @default.
- W2080973789 cites W2075845557 @default.
- W2080973789 cites W2077685411 @default.
- W2080973789 cites W2078237579 @default.
- W2080973789 cites W2079032355 @default.
- W2080973789 cites W2083063672 @default.
- W2080973789 cites W2084092719 @default.
- W2080973789 cites W2088939227 @default.
- W2080973789 cites W2089147644 @default.
- W2080973789 cites W2089995036 @default.
- W2080973789 cites W2092140298 @default.
- W2080973789 cites W2093588474 @default.
- W2080973789 cites W2094489794 @default.
- W2080973789 cites W2106868759 @default.
- W2080973789 cites W2107820993 @default.
- W2080973789 cites W2120027408 @default.
- W2080973789 cites W2122261562 @default.
- W2080973789 cites W2133597025 @default.
- W2080973789 cites W2149576353 @default.
- W2080973789 cites W2156232401 @default.
- W2080973789 cites W2407889192 @default.
- W2080973789 cites W4248126520 @default.
- W2080973789 cites W51105697 @default.
- W2080973789 doi "https://doi.org/10.1144/gsl.sp.1989.042.01.06" @default.
- W2080973789 hasPublicationYear "1989" @default.
- W2080973789 type Work @default.
- W2080973789 sameAs 2080973789 @default.
- W2080973789 citedByCount "339" @default.
- W2080973789 countsByYear W20809737892012 @default.
- W2080973789 countsByYear W20809737892013 @default.
- W2080973789 countsByYear W20809737892014 @default.
- W2080973789 countsByYear W20809737892015 @default.
- W2080973789 countsByYear W20809737892016 @default.
- W2080973789 countsByYear W20809737892017 @default.
- W2080973789 countsByYear W20809737892018 @default.
- W2080973789 countsByYear W20809737892019 @default.
- W2080973789 countsByYear W20809737892020 @default.
- W2080973789 countsByYear W20809737892021 @default.
- W2080973789 countsByYear W20809737892022 @default.
- W2080973789 countsByYear W20809737892023 @default.