Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080996579> ?p ?o ?g. }
- W2080996579 endingPage "486" @default.
- W2080996579 startingPage "479" @default.
- W2080996579 abstract "•Technical advances utilising genomics promise personalised, evidence-based healthcare. •Overstatements for common diseases risk/outcome prediction triggered regulations. •Risk-stratified intervention is a realistic strategy for targeting common diseases. •Electronic health records can aid curating cohorts for whole-of-life risk predictors. Genome sequencing has the potential for stratified cancer treatment and improved diagnostics for rare disorders. However, sequencing needs to be utilised in risk stratification on a population scale to deepen the impact on the health system by addressing common diseases, where individual genomic variants have variable penetrance and minor impact. As the accuracy of genomic risk predictors is bounded by heritability, environmental factors such as diet, lifestyle, and microbiome have to be considered. Large-scale, longitudinal research programmes need to study the intrinsic properties between both genetics and environment to unravel their risk contribution. During this discovery process, frameworks need to be established to counteract unrealistic expectations. Sufficient scientific evidence is needed to interpret sources of uncertainty and inform decision making for clinical management and personal health. Genome sequencing has the potential for stratified cancer treatment and improved diagnostics for rare disorders. However, sequencing needs to be utilised in risk stratification on a population scale to deepen the impact on the health system by addressing common diseases, where individual genomic variants have variable penetrance and minor impact. As the accuracy of genomic risk predictors is bounded by heritability, environmental factors such as diet, lifestyle, and microbiome have to be considered. Large-scale, longitudinal research programmes need to study the intrinsic properties between both genetics and environment to unravel their risk contribution. During this discovery process, frameworks need to be established to counteract unrealistic expectations. Sufficient scientific evidence is needed to interpret sources of uncertainty and inform decision making for clinical management and personal health. utilizing EHRs for the cost-effective recruitment of a precise and well-annotated patient cohort. a study designed to determine the association between a specific phenotype and environmental factors. combination of physical, chemical, nutritional, lifestyle, and psychosocial exposure factors. determining the genotype of a known disease marker. different treatment based on a person's actual or assumed genetic makeup. obtaining the genomic profile of an individual. a study designed to determine the association between a specific phenotype and the genotype of common genetic variants. set of genetic variations observed in an individual. medical data and treatment history in a machine-readable format shared with all relevant healthcare providers of the patient. adapting food and nutritional intake depending on the individual's genomic profile, life stage, and lifestyle to prevent disease or delay its onset. a study designed to determine the association between specific genomic regions and the observed phenotypes. proportion of a population found to have a specific disease condition. visualisation of sensitivity and specificity of a prediction method. subdividing a population into groups based on genetic profiles." @default.
- W2080996579 created "2016-06-24" @default.
- W2080996579 creator A5007283353 @default.
- W2080996579 creator A5039003591 @default.
- W2080996579 creator A5043970031 @default.
- W2080996579 creator A5044558599 @default.
- W2080996579 creator A5049900685 @default.
- W2080996579 creator A5052292208 @default.
- W2080996579 creator A5058034368 @default.
- W2080996579 creator A5075164642 @default.
- W2080996579 date "2014-09-01" @default.
- W2080996579 modified "2023-10-06" @default.
- W2080996579 title "Genomics and personalised whole-of-life healthcare" @default.
- W2080996579 cites W1536266250 @default.
- W2080996579 cites W1570612807 @default.
- W2080996579 cites W1596849539 @default.
- W2080996579 cites W1655065066 @default.
- W2080996579 cites W1973154957 @default.
- W2080996579 cites W1975508633 @default.
- W2080996579 cites W1980991473 @default.
- W2080996579 cites W1982952214 @default.
- W2080996579 cites W1989084966 @default.
- W2080996579 cites W1989668072 @default.
- W2080996579 cites W1993849688 @default.
- W2080996579 cites W2010039155 @default.
- W2080996579 cites W2016104730 @default.
- W2080996579 cites W2022783018 @default.
- W2080996579 cites W2025342001 @default.
- W2080996579 cites W2028197440 @default.
- W2080996579 cites W2030331137 @default.
- W2080996579 cites W2032437176 @default.
- W2080996579 cites W2037929579 @default.
- W2080996579 cites W2039527405 @default.
- W2080996579 cites W2043854324 @default.
- W2080996579 cites W2050117484 @default.
- W2080996579 cites W2051370624 @default.
- W2080996579 cites W2052560320 @default.
- W2080996579 cites W2053369230 @default.
- W2080996579 cites W2053718891 @default.
- W2080996579 cites W2057152418 @default.
- W2080996579 cites W2057913811 @default.
- W2080996579 cites W2058501414 @default.
- W2080996579 cites W2065091008 @default.
- W2080996579 cites W2084281933 @default.
- W2080996579 cites W2087591041 @default.
- W2080996579 cites W2096460732 @default.
- W2080996579 cites W2097656361 @default.
- W2080996579 cites W2097992938 @default.
- W2080996579 cites W2098667370 @default.
- W2080996579 cites W2103184242 @default.
- W2080996579 cites W2105398449 @default.
- W2080996579 cites W2106914804 @default.
- W2080996579 cites W2109072061 @default.
- W2080996579 cites W2109730560 @default.
- W2080996579 cites W2111197284 @default.
- W2080996579 cites W2115773111 @default.
- W2080996579 cites W2115883395 @default.
- W2080996579 cites W2120118206 @default.
- W2080996579 cites W2127297248 @default.
- W2080996579 cites W2129293257 @default.
- W2080996579 cites W2137487360 @default.
- W2080996579 cites W2137925405 @default.
- W2080996579 cites W2139226057 @default.
- W2080996579 cites W2142930729 @default.
- W2080996579 cites W2147095760 @default.
- W2080996579 cites W2149278098 @default.
- W2080996579 cites W2154866190 @default.
- W2080996579 cites W2155329925 @default.
- W2080996579 cites W2155496693 @default.
- W2080996579 cites W2157366410 @default.
- W2080996579 cites W2159265519 @default.
- W2080996579 cites W2163924952 @default.
- W2080996579 cites W2166110465 @default.
- W2080996579 cites W2167638767 @default.
- W2080996579 cites W2167643701 @default.
- W2080996579 cites W2168217134 @default.
- W2080996579 cites W2168479101 @default.
- W2080996579 cites W2168610667 @default.
- W2080996579 cites W2171777347 @default.
- W2080996579 cites W2172149768 @default.
- W2080996579 cites W2397556658 @default.
- W2080996579 cites W2584742488 @default.
- W2080996579 cites W4242508986 @default.
- W2080996579 doi "https://doi.org/10.1016/j.molmed.2014.04.001" @default.
- W2080996579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24801560" @default.
- W2080996579 hasPublicationYear "2014" @default.
- W2080996579 type Work @default.
- W2080996579 sameAs 2080996579 @default.
- W2080996579 citedByCount "18" @default.
- W2080996579 countsByYear W20809965792015 @default.
- W2080996579 countsByYear W20809965792016 @default.
- W2080996579 countsByYear W20809965792017 @default.
- W2080996579 countsByYear W20809965792018 @default.
- W2080996579 countsByYear W20809965792019 @default.
- W2080996579 countsByYear W20809965792020 @default.
- W2080996579 countsByYear W20809965792021 @default.
- W2080996579 countsByYear W20809965792022 @default.
- W2080996579 crossrefType "journal-article" @default.