Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081023708> ?p ?o ?g. }
- W2081023708 endingPage "76" @default.
- W2081023708 startingPage "63" @default.
- W2081023708 abstract "Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient analysis of variance-based stochastic circuit/microelectromechanical systems simulator to efficiently extract the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is efficiently simulated by our simulator at the cost of only 10min in MATLAB on a regular personal computer." @default.
- W2081023708 created "2016-06-24" @default.
- W2081023708 creator A5004111307 @default.
- W2081023708 creator A5009658255 @default.
- W2081023708 creator A5021651870 @default.
- W2081023708 creator A5047865852 @default.
- W2081023708 creator A5087963011 @default.
- W2081023708 date "2015-01-01" @default.
- W2081023708 modified "2023-10-10" @default.
- W2081023708 title "Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition" @default.
- W2081023708 cites W1538934584 @default.
- W2081023708 cites W1926678456 @default.
- W2081023708 cites W1963826206 @default.
- W2081023708 cites W1964960445 @default.
- W2081023708 cites W1965093639 @default.
- W2081023708 cites W1974963628 @default.
- W2081023708 cites W1980635834 @default.
- W2081023708 cites W1982421072 @default.
- W2081023708 cites W1982802100 @default.
- W2081023708 cites W1983156129 @default.
- W2081023708 cites W1986326495 @default.
- W2081023708 cites W1989345176 @default.
- W2081023708 cites W1993482030 @default.
- W2081023708 cites W1995406764 @default.
- W2081023708 cites W2000215628 @default.
- W2081023708 cites W2001518794 @default.
- W2081023708 cites W2002274796 @default.
- W2081023708 cites W2006423205 @default.
- W2081023708 cites W2013760665 @default.
- W2081023708 cites W2013912476 @default.
- W2081023708 cites W2018159038 @default.
- W2081023708 cites W2020328455 @default.
- W2081023708 cites W2035253925 @default.
- W2081023708 cites W2037360998 @default.
- W2081023708 cites W2053719548 @default.
- W2081023708 cites W2056901827 @default.
- W2081023708 cites W2060200773 @default.
- W2081023708 cites W2060662954 @default.
- W2081023708 cites W2061808582 @default.
- W2081023708 cites W2076769053 @default.
- W2081023708 cites W2079374105 @default.
- W2081023708 cites W2083845086 @default.
- W2081023708 cites W2084617396 @default.
- W2081023708 cites W2086791048 @default.
- W2081023708 cites W2092189481 @default.
- W2081023708 cites W2099238152 @default.
- W2081023708 cites W2100992121 @default.
- W2081023708 cites W2101589741 @default.
- W2081023708 cites W2107981385 @default.
- W2081023708 cites W2119511382 @default.
- W2081023708 cites W2123336403 @default.
- W2081023708 cites W2132267493 @default.
- W2081023708 cites W2140735333 @default.
- W2081023708 cites W2143591652 @default.
- W2081023708 cites W2144673168 @default.
- W2081023708 cites W2146476360 @default.
- W2081023708 cites W2146552914 @default.
- W2081023708 cites W2152312970 @default.
- W2081023708 cites W2159137164 @default.
- W2081023708 cites W2159254831 @default.
- W2081023708 cites W2162010030 @default.
- W2081023708 cites W2171971725 @default.
- W2081023708 cites W2172504065 @default.
- W2081023708 cites W2258054274 @default.
- W2081023708 cites W2287708537 @default.
- W2081023708 cites W2330216118 @default.
- W2081023708 cites W2617032002 @default.
- W2081023708 cites W3098347101 @default.
- W2081023708 cites W4232698621 @default.
- W2081023708 cites W4251264894 @default.
- W2081023708 cites W4253455740 @default.
- W2081023708 cites W79383899 @default.
- W2081023708 doi "https://doi.org/10.1109/tcad.2014.2369505" @default.
- W2081023708 hasPublicationYear "2015" @default.
- W2081023708 type Work @default.
- W2081023708 sameAs 2081023708 @default.
- W2081023708 citedByCount "93" @default.
- W2081023708 countsByYear W20810237082015 @default.
- W2081023708 countsByYear W20810237082016 @default.
- W2081023708 countsByYear W20810237082017 @default.
- W2081023708 countsByYear W20810237082018 @default.
- W2081023708 countsByYear W20810237082019 @default.
- W2081023708 countsByYear W20810237082020 @default.
- W2081023708 countsByYear W20810237082021 @default.
- W2081023708 countsByYear W20810237082022 @default.
- W2081023708 countsByYear W20810237082023 @default.
- W2081023708 crossrefType "journal-article" @default.
- W2081023708 hasAuthorship W2081023708A5004111307 @default.
- W2081023708 hasAuthorship W2081023708A5009658255 @default.
- W2081023708 hasAuthorship W2081023708A5021651870 @default.
- W2081023708 hasAuthorship W2081023708A5047865852 @default.
- W2081023708 hasAuthorship W2081023708A5087963011 @default.
- W2081023708 hasBestOaLocation W20810237082 @default.
- W2081023708 hasConcept C111030470 @default.
- W2081023708 hasConcept C111919701 @default.
- W2081023708 hasConcept C113775141 @default.
- W2081023708 hasConcept C11413529 @default.
- W2081023708 hasConcept C119857082 @default.