Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081203337> ?p ?o ?g. }
- W2081203337 endingPage "217" @default.
- W2081203337 startingPage "207" @default.
- W2081203337 abstract "On stochastic grammar* Brady Clark 1. Introduction Newmeyer (2003) has argued against models of mental grammars that incorporate probabilistic information (henceforth, stochastic grammar). In the discussion that follows, I review N’s arguments against stochastic grammar and attempt to show that they do not stand up to scrutiny. More generally, what follows is a defense of the inherent variability tradition of modeling linguistic variation.1 The inherent variability tradition includes the variable rules approach (see Labov 1969 and references in Paolillo 2002), classification and regression tree analysis (Ernestus & Baayen 2003), analogical modeling of language (Skousen 1989), generalized linear models (see references in Manning 2003), various versions of optimality theory (e.g. stochastic optimality theory (Boersma 1998, Clark 2004), partial ordering (Anttila 1997), floating constraints (Nagy & Reynolds 1997)), extensions of head-driven phrase structure grammar (Bender 2001), and extensions of the principle and parameters framework (Yang 2003). A guiding assumption of work in this tradition is that mental grammar accommodates and generates variation, and includes a quantitative, noncategorical, and nondeterministic component (Weinreich et al. 1968, Bender 2001). Before I turn to N’s arguments, I must mention some terminological assumptions. Throughout, when I use the term mental grammar, I mean a linguistic system existing in the mind of an individual speaker. When I use the term grammar model, I mean a theory of the mental grammar of an individual. 2. Methodological issues N’s (2003:696) first argument against stochastic grammar is methodological in nature. Noting that the corpora that advocates of stochastic grammar have typically drawn probabilities from encompass data from a wide range of speakers (e.g. the Switchboard Corpus (Dick & Elman 2001), the New York Times, etc.), N asks ‘how could usage facts from a speech community to which one does not belong have any relevance whatsoever to the nature of one’s grammar’ (Newmeyer 2003:696). 2.1. On the use of corpora This is a fair question, but its pointedness is weakened when one considers what linguists use corpora for. In practice, large corpora are drawn upon to develop descriptions of the language use of a wide range of speakers, as in statistical natural language processing (Manning & Schütze 1999:7). The central question in this type of approach is whether the corpora that are available are representative. This question is addressed by using statistics to handle finite samples of potentially infinite sets of data (Brew & Moens 2000). Is it reasonable to use frequency asymmetries in corpora to justify theories of individual mental grammars? As a matter of convenience and intended applications (e.g. [End Page 207] multi-user speech-to-text systems), work in statistical natural language processing typically does not separate data from different individuals. Consequently, descriptions of language use drawn from multi-individual corpora may seem irrelevant to grammar models. However, if we make the idealization that speakers share the same mental grammar, we can use the frequency of data of multi-individual corpora as a model of individual variation. Without this idealization, we could not begin to understand what different speakers have in common, for example, within a given speech community. Further, it is an accidental fact, not an essential one, that present-day corpora are not tailored to single individuals, in the sense that they contain all the external linguistic evidence a speaker might encounter or be exposed to in the course of learning. Present-day corpora serve as an adequate surrogate for individually tailored longitudinal collections of that sort. These corpora may not be a perfect substitute, but they are the best we can manage currently.2 One possible objection is that by mixing data from different individuals together in a large data set, evidence relevant to the investigation of the mental grammar of particular individuals is potentially obscured (Mohanan 2003, Newmeyer 2003). For example, in a situation where some individual mental grammars have pattern X (e.g. verb-object) and other individual mental grammars have pattern Y (e.g. object-verb), combining data from these two types of linguistic systems results in apparently random free variation (Mohanan 2003).3 It is often methodologically necessary to look at groups of speakers.4 In practice, both corpus studies..." @default.
- W2081203337 created "2016-06-24" @default.
- W2081203337 creator A5000350933 @default.
- W2081203337 date "2005-01-01" @default.
- W2081203337 modified "2023-09-27" @default.
- W2081203337 title "On Stochastic Grammar" @default.
- W2081203337 cites W142306738 @default.
- W2081203337 cites W147871884 @default.
- W2081203337 cites W1482677897 @default.
- W2081203337 cites W1497748330 @default.
- W2081203337 cites W1533806699 @default.
- W2081203337 cites W1543852432 @default.
- W2081203337 cites W1544217300 @default.
- W2081203337 cites W1559389464 @default.
- W2081203337 cites W1562911371 @default.
- W2081203337 cites W1568426241 @default.
- W2081203337 cites W1574305344 @default.
- W2081203337 cites W1574901103 @default.
- W2081203337 cites W1601068932 @default.
- W2081203337 cites W1828629796 @default.
- W2081203337 cites W1898626314 @default.
- W2081203337 cites W1982697162 @default.
- W2081203337 cites W1985098785 @default.
- W2081203337 cites W2006197442 @default.
- W2081203337 cites W2010161142 @default.
- W2081203337 cites W2024988999 @default.
- W2081203337 cites W2037579050 @default.
- W2081203337 cites W2045490466 @default.
- W2081203337 cites W2049721946 @default.
- W2081203337 cites W20585505 @default.
- W2081203337 cites W2062783322 @default.
- W2081203337 cites W2089683596 @default.
- W2081203337 cites W2092616487 @default.
- W2081203337 cites W2094001298 @default.
- W2081203337 cites W2097609022 @default.
- W2081203337 cites W2098967705 @default.
- W2081203337 cites W2106945050 @default.
- W2081203337 cites W2117615882 @default.
- W2081203337 cites W2121733087 @default.
- W2081203337 cites W2132851324 @default.
- W2081203337 cites W2145959136 @default.
- W2081203337 cites W2156434586 @default.
- W2081203337 cites W2320137967 @default.
- W2081203337 cites W2493033016 @default.
- W2081203337 cites W2737466359 @default.
- W2081203337 cites W2767602984 @default.
- W2081203337 cites W346125049 @default.
- W2081203337 cites W36085439 @default.
- W2081203337 cites W97451065 @default.
- W2081203337 cites W1775483483 @default.
- W2081203337 cites W2002001621 @default.
- W2081203337 doi "https://doi.org/10.1353/lan.2005.0011" @default.
- W2081203337 hasPublicationYear "2005" @default.
- W2081203337 type Work @default.
- W2081203337 sameAs 2081203337 @default.
- W2081203337 citedByCount "39" @default.
- W2081203337 countsByYear W20812033372014 @default.
- W2081203337 countsByYear W20812033372017 @default.
- W2081203337 crossrefType "journal-article" @default.
- W2081203337 hasAuthorship W2081203337A5000350933 @default.
- W2081203337 hasConcept C121332964 @default.
- W2081203337 hasConcept C138885662 @default.
- W2081203337 hasConcept C185592680 @default.
- W2081203337 hasConcept C26022165 @default.
- W2081203337 hasConcept C2778334786 @default.
- W2081203337 hasConcept C33923547 @default.
- W2081203337 hasConcept C41008148 @default.
- W2081203337 hasConcept C41895202 @default.
- W2081203337 hasConcept C44870925 @default.
- W2081203337 hasConcept C55493867 @default.
- W2081203337 hasConcept C61797465 @default.
- W2081203337 hasConcept C62520636 @default.
- W2081203337 hasConcept C69298649 @default.
- W2081203337 hasConcept C98184364 @default.
- W2081203337 hasConceptScore W2081203337C121332964 @default.
- W2081203337 hasConceptScore W2081203337C138885662 @default.
- W2081203337 hasConceptScore W2081203337C185592680 @default.
- W2081203337 hasConceptScore W2081203337C26022165 @default.
- W2081203337 hasConceptScore W2081203337C2778334786 @default.
- W2081203337 hasConceptScore W2081203337C33923547 @default.
- W2081203337 hasConceptScore W2081203337C41008148 @default.
- W2081203337 hasConceptScore W2081203337C41895202 @default.
- W2081203337 hasConceptScore W2081203337C44870925 @default.
- W2081203337 hasConceptScore W2081203337C55493867 @default.
- W2081203337 hasConceptScore W2081203337C61797465 @default.
- W2081203337 hasConceptScore W2081203337C62520636 @default.
- W2081203337 hasConceptScore W2081203337C69298649 @default.
- W2081203337 hasConceptScore W2081203337C98184364 @default.
- W2081203337 hasIssue "1" @default.
- W2081203337 hasLocation W20812033371 @default.
- W2081203337 hasOpenAccess W2081203337 @default.
- W2081203337 hasPrimaryLocation W20812033371 @default.
- W2081203337 hasRelatedWork W2043490996 @default.
- W2081203337 hasRelatedWork W2136482140 @default.
- W2081203337 hasRelatedWork W2324260950 @default.
- W2081203337 hasRelatedWork W2351662103 @default.
- W2081203337 hasRelatedWork W2358014410 @default.
- W2081203337 hasRelatedWork W2519155136 @default.