Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081332530> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2081332530 endingPage "1006" @default.
- W2081332530 startingPage "993" @default.
- W2081332530 abstract "Traditional maximum entropy-based thresholding methods are very popular and efficient in the case of bilevel thresholding. But they are very computationally expensive when extended to multilevel thresholding since the inevitable exhaustive search of optimal thresholds needed to maximize the posterior entropy. In this paper, a reinforcement learning (RL) approach is proposed for the maximum entropy thresholding. We show that finding the optimal thresholds using the maximum entropy criterion is equivalent to learning an optimal policy of the RL problem. Therefore, the powerful Q-learning algorithm, which is widely used in RL, can be employed to eradicate the computation burden of the maximum entropy-based thresholding methods. The experimental results show that the proposed method is suitable in the case of multilevel thresholding and the performance is better than that of the genetic algorithm-based entropy thresholding method." @default.
- W2081332530 created "2016-06-24" @default.
- W2081332530 creator A5015808197 @default.
- W2081332530 date "2002-07-01" @default.
- W2081332530 modified "2023-09-23" @default.
- W2081332530 title "Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization" @default.
- W2081332530 cites W1970800786 @default.
- W2081332530 cites W1981166861 @default.
- W2081332530 cites W1983955801 @default.
- W2081332530 cites W1984153831 @default.
- W2081332530 cites W2015148966 @default.
- W2081332530 cites W2022067624 @default.
- W2081332530 cites W2083827484 @default.
- W2081332530 cites W2083970667 @default.
- W2081332530 cites W2099808703 @default.
- W2081332530 cites W2107726111 @default.
- W2081332530 cites W2141358266 @default.
- W2081332530 doi "https://doi.org/10.1016/s0165-1684(02)00203-7" @default.
- W2081332530 hasPublicationYear "2002" @default.
- W2081332530 type Work @default.
- W2081332530 sameAs 2081332530 @default.
- W2081332530 citedByCount "61" @default.
- W2081332530 countsByYear W20813325302012 @default.
- W2081332530 countsByYear W20813325302014 @default.
- W2081332530 countsByYear W20813325302015 @default.
- W2081332530 countsByYear W20813325302016 @default.
- W2081332530 countsByYear W20813325302017 @default.
- W2081332530 countsByYear W20813325302018 @default.
- W2081332530 countsByYear W20813325302019 @default.
- W2081332530 countsByYear W20813325302020 @default.
- W2081332530 countsByYear W20813325302021 @default.
- W2081332530 countsByYear W20813325302022 @default.
- W2081332530 countsByYear W20813325302023 @default.
- W2081332530 crossrefType "journal-article" @default.
- W2081332530 hasAuthorship W2081332530A5015808197 @default.
- W2081332530 hasConcept C106301342 @default.
- W2081332530 hasConcept C11413529 @default.
- W2081332530 hasConcept C115961682 @default.
- W2081332530 hasConcept C121332964 @default.
- W2081332530 hasConcept C126255220 @default.
- W2081332530 hasConcept C153180895 @default.
- W2081332530 hasConcept C154945302 @default.
- W2081332530 hasConcept C191178318 @default.
- W2081332530 hasConcept C33923547 @default.
- W2081332530 hasConcept C41008148 @default.
- W2081332530 hasConcept C45374587 @default.
- W2081332530 hasConcept C62520636 @default.
- W2081332530 hasConcept C9679016 @default.
- W2081332530 hasConcept C97541855 @default.
- W2081332530 hasConceptScore W2081332530C106301342 @default.
- W2081332530 hasConceptScore W2081332530C11413529 @default.
- W2081332530 hasConceptScore W2081332530C115961682 @default.
- W2081332530 hasConceptScore W2081332530C121332964 @default.
- W2081332530 hasConceptScore W2081332530C126255220 @default.
- W2081332530 hasConceptScore W2081332530C153180895 @default.
- W2081332530 hasConceptScore W2081332530C154945302 @default.
- W2081332530 hasConceptScore W2081332530C191178318 @default.
- W2081332530 hasConceptScore W2081332530C33923547 @default.
- W2081332530 hasConceptScore W2081332530C41008148 @default.
- W2081332530 hasConceptScore W2081332530C45374587 @default.
- W2081332530 hasConceptScore W2081332530C62520636 @default.
- W2081332530 hasConceptScore W2081332530C9679016 @default.
- W2081332530 hasConceptScore W2081332530C97541855 @default.
- W2081332530 hasIssue "7" @default.
- W2081332530 hasLocation W20813325301 @default.
- W2081332530 hasOpenAccess W2081332530 @default.
- W2081332530 hasPrimaryLocation W20813325301 @default.
- W2081332530 hasRelatedWork W2033000528 @default.
- W2081332530 hasRelatedWork W2061686969 @default.
- W2081332530 hasRelatedWork W2078788163 @default.
- W2081332530 hasRelatedWork W2081332530 @default.
- W2081332530 hasRelatedWork W2253603707 @default.
- W2081332530 hasRelatedWork W2371245230 @default.
- W2081332530 hasRelatedWork W2390547786 @default.
- W2081332530 hasRelatedWork W2551411339 @default.
- W2081332530 hasRelatedWork W2792520941 @default.
- W2081332530 hasRelatedWork W3175271736 @default.
- W2081332530 hasVolume "82" @default.
- W2081332530 isParatext "false" @default.
- W2081332530 isRetracted "false" @default.
- W2081332530 magId "2081332530" @default.
- W2081332530 workType "article" @default.