Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081473469> ?p ?o ?g. }
- W2081473469 endingPage "188" @default.
- W2081473469 startingPage "179" @default.
- W2081473469 abstract "This article provides an overview of the central issues regarding cost valuation and analysis for a decision maker's evaluation of costing performed within randomized controlled trials (RCTs). Costing involves specific choices for valuation and analysis that involve trade-offs. Understanding these choices and their implications is necessary for proper evaluation of how costs are valued and analyzed within an RCT and cannot be assessed through a checklist of adherence to general principles. Resource costing, the most common method of costing, involves measuring medical service use in study case report forms and translating this use into a cost by multiplying the number of units of each medical service by price weights for those services. A choice must be made as to how detailed the measurement of resources will be. Micro-costing improves the specificity of the cost estimate, but it is often impractical to precisely measure resources at this level and the price weights for these micro-units may not be available. Gross-costing may be more practical, and price weights are often easier to find and are more reliable, but important resource differences between treatment groups may be lost in the bundling of resources. Price weights can either be nationally determined or centre specific, but the appropriate price weight will depend on perspective, convenience, completeness and accuracy. Identifying the resource types and the appropriate price weights for these resources are the essential elements to an accurate valuation of costs. Once medical services are valued, the resulting individual patient cost estimates must be analysed. The difference in the mean cost between treatment groups is the important summary statistic for cost-effectiveness analysis from both the budgetary and the social perspectives. The statistical challenges with cost data typically stem from its skewed distribution and the resulting possibility that the sample mean may be inefficient and possibly inappropriate for statistical inference. Multivariable analysis of cost is useful, even if the data come from an RCT, but the same distributional problems that affect univariate tests of cost also affect use of cost as a dependent variable in a multivariable regression analysis. The generalized linear model (GLM) overcomes many of the problems of more common cost models, but caution must be used when applying this model because it is prone to mis-specification and precision losses in data with a heavy-tailed log error term. Attention to the appropriate cost valuation and analysis techniques reviewed here will help bring the same level of rigor and attention to the methodological issues in cost valuation as is currently applied to clinical evidence within RCTs." @default.
- W2081473469 created "2016-06-24" @default.
- W2081473469 creator A5072796055 @default.
- W2081473469 creator A5089753226 @default.
- W2081473469 date "2009-01-01" @default.
- W2081473469 modified "2023-09-26" @default.
- W2081473469 title "Costing and Cost Analysis in Randomized Controlled Trials" @default.
- W2081473469 cites W1560049076 @default.
- W2081473469 cites W1968106809 @default.
- W2081473469 cites W1970010064 @default.
- W2081473469 cites W1973408090 @default.
- W2081473469 cites W1973736054 @default.
- W2081473469 cites W1976483601 @default.
- W2081473469 cites W1979102876 @default.
- W2081473469 cites W1984366858 @default.
- W2081473469 cites W1991706305 @default.
- W2081473469 cites W1996146145 @default.
- W2081473469 cites W2006623746 @default.
- W2081473469 cites W2006935825 @default.
- W2081473469 cites W2019257540 @default.
- W2081473469 cites W2020015257 @default.
- W2081473469 cites W2026036082 @default.
- W2081473469 cites W2034440069 @default.
- W2081473469 cites W2034915522 @default.
- W2081473469 cites W2043458654 @default.
- W2081473469 cites W2045291273 @default.
- W2081473469 cites W2061868314 @default.
- W2081473469 cites W2070252735 @default.
- W2081473469 cites W2077158601 @default.
- W2081473469 cites W2078999142 @default.
- W2081473469 cites W2093438883 @default.
- W2081473469 cites W2093469685 @default.
- W2081473469 cites W2102976886 @default.
- W2081473469 cites W2126344785 @default.
- W2081473469 cites W2128581025 @default.
- W2081473469 cites W2143532751 @default.
- W2081473469 cites W2146099263 @default.
- W2081473469 cites W2146931443 @default.
- W2081473469 cites W2150212253 @default.
- W2081473469 cites W2157095832 @default.
- W2081473469 cites W2801490189 @default.
- W2081473469 cites W3123574146 @default.
- W2081473469 cites W3124564277 @default.
- W2081473469 doi "https://doi.org/10.2165/00019053-200927030-00001" @default.
- W2081473469 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2971527" @default.
- W2081473469 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19354338" @default.
- W2081473469 hasPublicationYear "2009" @default.
- W2081473469 type Work @default.
- W2081473469 sameAs 2081473469 @default.
- W2081473469 citedByCount "58" @default.
- W2081473469 countsByYear W20814734692012 @default.
- W2081473469 countsByYear W20814734692013 @default.
- W2081473469 countsByYear W20814734692014 @default.
- W2081473469 countsByYear W20814734692015 @default.
- W2081473469 countsByYear W20814734692016 @default.
- W2081473469 countsByYear W20814734692017 @default.
- W2081473469 countsByYear W20814734692018 @default.
- W2081473469 countsByYear W20814734692019 @default.
- W2081473469 countsByYear W20814734692020 @default.
- W2081473469 countsByYear W20814734692021 @default.
- W2081473469 countsByYear W20814734692022 @default.
- W2081473469 countsByYear W20814734692023 @default.
- W2081473469 crossrefType "journal-article" @default.
- W2081473469 hasAuthorship W2081473469A5072796055 @default.
- W2081473469 hasAuthorship W2081473469A5089753226 @default.
- W2081473469 hasBestOaLocation W20814734692 @default.
- W2081473469 hasConcept C121955636 @default.
- W2081473469 hasConcept C144133560 @default.
- W2081473469 hasConcept C15744967 @default.
- W2081473469 hasConcept C160735492 @default.
- W2081473469 hasConcept C162118730 @default.
- W2081473469 hasConcept C162324750 @default.
- W2081473469 hasConcept C162853370 @default.
- W2081473469 hasConcept C164624739 @default.
- W2081473469 hasConcept C175444787 @default.
- W2081473469 hasConcept C180747234 @default.
- W2081473469 hasConcept C186027771 @default.
- W2081473469 hasConcept C21547014 @default.
- W2081473469 hasConcept C2776125615 @default.
- W2081473469 hasConcept C2779356329 @default.
- W2081473469 hasConcept C33923547 @default.
- W2081473469 hasConcept C41008148 @default.
- W2081473469 hasConcept C42475967 @default.
- W2081473469 hasConcept C50522688 @default.
- W2081473469 hasConcept C524218345 @default.
- W2081473469 hasConcept C94107157 @default.
- W2081473469 hasConceptScore W2081473469C121955636 @default.
- W2081473469 hasConceptScore W2081473469C144133560 @default.
- W2081473469 hasConceptScore W2081473469C15744967 @default.
- W2081473469 hasConceptScore W2081473469C160735492 @default.
- W2081473469 hasConceptScore W2081473469C162118730 @default.
- W2081473469 hasConceptScore W2081473469C162324750 @default.
- W2081473469 hasConceptScore W2081473469C162853370 @default.
- W2081473469 hasConceptScore W2081473469C164624739 @default.
- W2081473469 hasConceptScore W2081473469C175444787 @default.
- W2081473469 hasConceptScore W2081473469C180747234 @default.
- W2081473469 hasConceptScore W2081473469C186027771 @default.
- W2081473469 hasConceptScore W2081473469C21547014 @default.