Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081497798> ?p ?o ?g. }
- W2081497798 endingPage "466" @default.
- W2081497798 startingPage "453" @default.
- W2081497798 abstract "The thermal resistance (or Bullard) method is used to judge the utility of petroleum well bottom‐hole temperature data in determining surface heat flow and subsurface temperature patterns in a sedimentary basin. Thermal resistance, defined as the quotient of a depth parameter Δz and thermal conductivity k, governs subsurface temperatures as follows: [Formula: see text] where [Formula: see text] is the temperature at depth z=B, [Formula: see text] is the surface temperature, [Formula: see text] is surface heat flow, and the thermal resistance (Δz/k) is summed for all rock units between the surface and depth B. In practice, bottom‐hole and surface temperatures are combined with a measured or estimated thermal conductivity profile to determine the surface heat flow [Formula: see text] which, in turn, is used for all consequent subsurface temperature computations. The method has been applied to the Tertiary Uinta Basin, northeastern Utah, a basin of intermediate geologic complexity—simple structure but complex facies relationships—where considerable well data are available. Bottom‐hole temperatures were obtained for 97 selected wells where multiple well logs permitted correction of temperatures for drilling effects. Thermal conductivity values, determined for 852 samples from 5 representative wells varying in depth from 670 to 5180 m, together with available geologic data were used to produce conductivity maps for each formation. These maps show intraformational variations across the basin that are associated with lateral facies changes. Formation thicknesses needed for the thermal resistance summation were obtained by utilizing approximately 2000 wells in the WEXPRO Petroleum Information file. Computations were facilitated by describing all formation contacts as fourth‐order polynomial surfaces. Average geothermal gradient and heat flow for the Uinta Basin are [Formula: see text] and [Formula: see text], respectively. Heat flow appears to decrease systematically from 65 to [Formula: see text] from the Duchesne River northward toward the south flank of the Uinta Mountains. This decrease may be the result of refraction of heat into the highly conductive quartzose Precambrian Uinta Mountain Group. More likely, however, it is related to groundwater recharge in late Paleozoic and Mesozoic sandstone and limestone beds that flank the south side of the Uintas. Heat flow values determined for the southeast portion of the basin show some scatter about a mean value of [Formula: see text] but no systematic variation." @default.
- W2081497798 created "2016-06-24" @default.
- W2081497798 creator A5011047085 @default.
- W2081497798 creator A5041397944 @default.
- W2081497798 creator A5066697479 @default.
- W2081497798 creator A5091503357 @default.
- W2081497798 date "1984-04-01" @default.
- W2081497798 modified "2023-09-27" @default.
- W2081497798 title "Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data" @default.
- W2081497798 cites W1524328841 @default.
- W2081497798 cites W1562355346 @default.
- W2081497798 cites W1581389305 @default.
- W2081497798 cites W1582490147 @default.
- W2081497798 cites W1642143085 @default.
- W2081497798 cites W1830076390 @default.
- W2081497798 cites W1978774008 @default.
- W2081497798 cites W1989365297 @default.
- W2081497798 cites W2001852686 @default.
- W2081497798 cites W2002729176 @default.
- W2081497798 cites W2011308668 @default.
- W2081497798 cites W2018479399 @default.
- W2081497798 cites W2022414367 @default.
- W2081497798 cites W2028313287 @default.
- W2081497798 cites W2039913103 @default.
- W2081497798 cites W2046862829 @default.
- W2081497798 cites W2049964887 @default.
- W2081497798 cites W2053326799 @default.
- W2081497798 cites W2066458447 @default.
- W2081497798 cites W2067722023 @default.
- W2081497798 cites W2073534040 @default.
- W2081497798 cites W2087176794 @default.
- W2081497798 cites W2091622873 @default.
- W2081497798 cites W2122604585 @default.
- W2081497798 cites W2125449308 @default.
- W2081497798 cites W2141043003 @default.
- W2081497798 cites W2142204857 @default.
- W2081497798 cites W2159299883 @default.
- W2081497798 cites W2285646892 @default.
- W2081497798 cites W3138873357 @default.
- W2081497798 cites W3203743753 @default.
- W2081497798 doi "https://doi.org/10.1190/1.1441680" @default.
- W2081497798 hasPublicationYear "1984" @default.
- W2081497798 type Work @default.
- W2081497798 sameAs 2081497798 @default.
- W2081497798 citedByCount "140" @default.
- W2081497798 countsByYear W20814977982012 @default.
- W2081497798 countsByYear W20814977982013 @default.
- W2081497798 countsByYear W20814977982014 @default.
- W2081497798 countsByYear W20814977982015 @default.
- W2081497798 countsByYear W20814977982016 @default.
- W2081497798 countsByYear W20814977982017 @default.
- W2081497798 countsByYear W20814977982018 @default.
- W2081497798 countsByYear W20814977982019 @default.
- W2081497798 countsByYear W20814977982020 @default.
- W2081497798 countsByYear W20814977982021 @default.
- W2081497798 countsByYear W20814977982022 @default.
- W2081497798 countsByYear W20814977982023 @default.
- W2081497798 crossrefType "journal-article" @default.
- W2081497798 hasAuthorship W2081497798A5011047085 @default.
- W2081497798 hasAuthorship W2081497798A5041397944 @default.
- W2081497798 hasAuthorship W2081497798A5066697479 @default.
- W2081497798 hasAuthorship W2081497798A5091503357 @default.
- W2081497798 hasConcept C109007969 @default.
- W2081497798 hasConcept C114793014 @default.
- W2081497798 hasConcept C121332964 @default.
- W2081497798 hasConcept C127313418 @default.
- W2081497798 hasConcept C137693562 @default.
- W2081497798 hasConcept C17409809 @default.
- W2081497798 hasConcept C199289684 @default.
- W2081497798 hasConcept C200646496 @default.
- W2081497798 hasConcept C204530211 @default.
- W2081497798 hasConcept C2985596519 @default.
- W2081497798 hasConcept C6494504 @default.
- W2081497798 hasConcept C97346530 @default.
- W2081497798 hasConcept C97355855 @default.
- W2081497798 hasConceptScore W2081497798C109007969 @default.
- W2081497798 hasConceptScore W2081497798C114793014 @default.
- W2081497798 hasConceptScore W2081497798C121332964 @default.
- W2081497798 hasConceptScore W2081497798C127313418 @default.
- W2081497798 hasConceptScore W2081497798C137693562 @default.
- W2081497798 hasConceptScore W2081497798C17409809 @default.
- W2081497798 hasConceptScore W2081497798C199289684 @default.
- W2081497798 hasConceptScore W2081497798C200646496 @default.
- W2081497798 hasConceptScore W2081497798C204530211 @default.
- W2081497798 hasConceptScore W2081497798C2985596519 @default.
- W2081497798 hasConceptScore W2081497798C6494504 @default.
- W2081497798 hasConceptScore W2081497798C97346530 @default.
- W2081497798 hasConceptScore W2081497798C97355855 @default.
- W2081497798 hasIssue "4" @default.
- W2081497798 hasLocation W20814977981 @default.
- W2081497798 hasOpenAccess W2081497798 @default.
- W2081497798 hasPrimaryLocation W20814977981 @default.
- W2081497798 hasRelatedWork W1988820432 @default.
- W2081497798 hasRelatedWork W2036418553 @default.
- W2081497798 hasRelatedWork W2060779124 @default.
- W2081497798 hasRelatedWork W2167191862 @default.
- W2081497798 hasRelatedWork W2300241711 @default.
- W2081497798 hasRelatedWork W2352925553 @default.