Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081657478> ?p ?o ?g. }
- W2081657478 abstract "The use of Statistical Finite Automata (SFA) has been explored in the field of understanding the DNA sequences; many focus o n local patterns, namely partial representations of DNA sequences. In this paper, we focus on global and complete representations to understand the patterns in whole DNA sequences. Obviously, DNA sequences are not random. Based on Kolmogorov complexity theory, there should be some simple Turing machines that write out such sequences; here simple means the complexity of the Turing machine is simpler than the data. The primary goal of this paper is to approximate such simple Turing machines by SFA. We use SFA, via ALERGIA algorithm (in the light granular computing), to capture and analyze the translation process (DNA to protein) based on amino acids' chemical property viz., polarity. This, in turn, enables the understanding of interspecies DNA comparisons and the creation of phylogeny — the ‘tree of life’." @default.
- W2081657478 created "2016-06-24" @default.
- W2081657478 creator A5044734253 @default.
- W2081657478 creator A5056436726 @default.
- W2081657478 date "2014-10-01" @default.
- W2081657478 modified "2023-10-14" @default.
- W2081657478 title "Stochastic Finite Automata for the translation of DNA to protein" @default.
- W2081657478 cites W1486103693 @default.
- W2081657478 cites W1499872918 @default.
- W2081657478 cites W1506904277 @default.
- W2081657478 cites W1529071193 @default.
- W2081657478 cites W1602988707 @default.
- W2081657478 cites W1707796337 @default.
- W2081657478 cites W1941427975 @default.
- W2081657478 cites W1984772269 @default.
- W2081657478 cites W1994486459 @default.
- W2081657478 cites W1998894153 @default.
- W2081657478 cites W2015502095 @default.
- W2081657478 cites W2033488966 @default.
- W2081657478 cites W2042238866 @default.
- W2081657478 cites W2055214702 @default.
- W2081657478 cites W2058798095 @default.
- W2081657478 cites W2058938568 @default.
- W2081657478 cites W2106649514 @default.
- W2081657478 cites W2114999674 @default.
- W2081657478 cites W2115448180 @default.
- W2081657478 cites W2133025816 @default.
- W2081657478 cites W2151705106 @default.
- W2081657478 cites W2281572985 @default.
- W2081657478 cites W2322672979 @default.
- W2081657478 doi "https://doi.org/10.1109/bigdata.2014.7004340" @default.
- W2081657478 hasPublicationYear "2014" @default.
- W2081657478 type Work @default.
- W2081657478 sameAs 2081657478 @default.
- W2081657478 citedByCount "3" @default.
- W2081657478 countsByYear W20816574782019 @default.
- W2081657478 countsByYear W20816574782020 @default.
- W2081657478 crossrefType "proceedings-article" @default.
- W2081657478 hasAuthorship W2081657478A5044734253 @default.
- W2081657478 hasAuthorship W2081657478A5056436726 @default.
- W2081657478 hasConcept C111472728 @default.
- W2081657478 hasConcept C112505250 @default.
- W2081657478 hasConcept C113174947 @default.
- W2081657478 hasConcept C11413529 @default.
- W2081657478 hasConcept C114614502 @default.
- W2081657478 hasConcept C120665830 @default.
- W2081657478 hasConcept C121332964 @default.
- W2081657478 hasConcept C138885662 @default.
- W2081657478 hasConcept C192209626 @default.
- W2081657478 hasConcept C199360897 @default.
- W2081657478 hasConcept C2779341405 @default.
- W2081657478 hasConcept C2780586882 @default.
- W2081657478 hasConcept C29248071 @default.
- W2081657478 hasConcept C33923547 @default.
- W2081657478 hasConcept C35527583 @default.
- W2081657478 hasConcept C41008148 @default.
- W2081657478 hasConcept C45374587 @default.
- W2081657478 hasConcept C54355233 @default.
- W2081657478 hasConcept C552990157 @default.
- W2081657478 hasConcept C80444323 @default.
- W2081657478 hasConcept C86803240 @default.
- W2081657478 hasConcept C9870796 @default.
- W2081657478 hasConceptScore W2081657478C111472728 @default.
- W2081657478 hasConceptScore W2081657478C112505250 @default.
- W2081657478 hasConceptScore W2081657478C113174947 @default.
- W2081657478 hasConceptScore W2081657478C11413529 @default.
- W2081657478 hasConceptScore W2081657478C114614502 @default.
- W2081657478 hasConceptScore W2081657478C120665830 @default.
- W2081657478 hasConceptScore W2081657478C121332964 @default.
- W2081657478 hasConceptScore W2081657478C138885662 @default.
- W2081657478 hasConceptScore W2081657478C192209626 @default.
- W2081657478 hasConceptScore W2081657478C199360897 @default.
- W2081657478 hasConceptScore W2081657478C2779341405 @default.
- W2081657478 hasConceptScore W2081657478C2780586882 @default.
- W2081657478 hasConceptScore W2081657478C29248071 @default.
- W2081657478 hasConceptScore W2081657478C33923547 @default.
- W2081657478 hasConceptScore W2081657478C35527583 @default.
- W2081657478 hasConceptScore W2081657478C41008148 @default.
- W2081657478 hasConceptScore W2081657478C45374587 @default.
- W2081657478 hasConceptScore W2081657478C54355233 @default.
- W2081657478 hasConceptScore W2081657478C552990157 @default.
- W2081657478 hasConceptScore W2081657478C80444323 @default.
- W2081657478 hasConceptScore W2081657478C86803240 @default.
- W2081657478 hasConceptScore W2081657478C9870796 @default.
- W2081657478 hasLocation W20816574781 @default.
- W2081657478 hasOpenAccess W2081657478 @default.
- W2081657478 hasPrimaryLocation W20816574781 @default.
- W2081657478 hasRelatedWork W1875684226 @default.
- W2081657478 hasRelatedWork W1968720345 @default.
- W2081657478 hasRelatedWork W1972036341 @default.
- W2081657478 hasRelatedWork W2009711705 @default.
- W2081657478 hasRelatedWork W2056070002 @default.
- W2081657478 hasRelatedWork W2062083289 @default.
- W2081657478 hasRelatedWork W2064658898 @default.
- W2081657478 hasRelatedWork W2065620770 @default.
- W2081657478 hasRelatedWork W2075471429 @default.
- W2081657478 hasRelatedWork W2127830205 @default.
- W2081657478 hasRelatedWork W2155128782 @default.
- W2081657478 hasRelatedWork W2197501482 @default.
- W2081657478 hasRelatedWork W2465205667 @default.