Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081699585> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2081699585 abstract "Occasionally, with a designed experiment, certain observations may be missing for some reason. An accepted procedure in such a situation is to estimate these missing values from the remaining data, making slight changes in the analysis to account for this action. A good description of this technique is given in Reference 1. As proposed by Yates, Reference 2, missing values are inserted by minimizing the residual sum of squares. That is, unknown quantities are inserted when values are missing, and the analysis is carried out as usual to yield a residual sum of squares. This residual will be a function of the unknown quantities. It is then differentiated with respect to each of the unknown quantities, and the resulting system of equations is solved for these unknowns. These solutions are inserted in place of the missing observations. For many standard experimental plans, missing value formulas for a single missing observation have been derived. A good listing of such formulas is given in Reference 1. In application, when more than one observation is missing, it is often simpler to use such standard formulas together with an iterative estimation procedure, rather than to proceed as in the preceding paragraph. With this iterative procedure, initial estimates are assigned all the missing observations but one, which is then estimated by the applicable formula. Using this value, and the initial estimates of all but one of the remaining quantities, the second missing value is found by the formula. This procedure is followed until all estimates show no significant change from one cycle to the next. The number of cycles necessary before convergence is attained depends heavily upon the choice of the initial estimates and, of course, on the user's definition of convergence in a given application. With this iteration technique, the problem of finding several missing observations reduces to the problem of finding one such value. Whether by use of formula, or by the direct approach, it is generally accepted that the criterion for choosing a missing value is the minimization of the residual sum of squares as proposed by Yates, Reference 2. It is not generally recognized that this is equivalent to choosing the missing value to make the model fit perfectly at this point, that is, to make the particular residual equal to zero. A proof of this equivalence is contained in the appendix. It has been the author's experience that recognition of this fact leads to two advantages: 1. When teaching missing value estimation, the derivation of missing value formulas is simpler for certain patterned experiments using this approach. 2. In some applications, this method of estimating missing values leads to a very simple solution. This is especially valuable when standard missing value formulas are not readily available." @default.
- W2081699585 created "2016-06-24" @default.
- W2081699585 creator A5004184853 @default.
- W2081699585 date "1966-12-01" @default.
- W2081699585 modified "2023-09-24" @default.
- W2081699585 title "An Alternate Approach to Missing Value Estimation" @default.
- W2081699585 cites W2920893491 @default.
- W2081699585 doi "https://doi.org/10.1080/00031305.1966.10480422" @default.
- W2081699585 hasPublicationYear "1966" @default.
- W2081699585 type Work @default.
- W2081699585 sameAs 2081699585 @default.
- W2081699585 citedByCount "3" @default.
- W2081699585 countsByYear W20816995852019 @default.
- W2081699585 crossrefType "journal-article" @default.
- W2081699585 hasAuthorship W2081699585A5004184853 @default.
- W2081699585 hasConcept C105795698 @default.
- W2081699585 hasConcept C11413529 @default.
- W2081699585 hasConcept C136764020 @default.
- W2081699585 hasConcept C14036430 @default.
- W2081699585 hasConcept C155512373 @default.
- W2081699585 hasConcept C185429906 @default.
- W2081699585 hasConcept C2776291640 @default.
- W2081699585 hasConcept C2777206241 @default.
- W2081699585 hasConcept C28826006 @default.
- W2081699585 hasConcept C33923547 @default.
- W2081699585 hasConcept C41008148 @default.
- W2081699585 hasConcept C45923927 @default.
- W2081699585 hasConcept C49392186 @default.
- W2081699585 hasConcept C49847556 @default.
- W2081699585 hasConcept C58041806 @default.
- W2081699585 hasConcept C78458016 @default.
- W2081699585 hasConcept C86803240 @default.
- W2081699585 hasConcept C9357733 @default.
- W2081699585 hasConcept C9936470 @default.
- W2081699585 hasConceptScore W2081699585C105795698 @default.
- W2081699585 hasConceptScore W2081699585C11413529 @default.
- W2081699585 hasConceptScore W2081699585C136764020 @default.
- W2081699585 hasConceptScore W2081699585C14036430 @default.
- W2081699585 hasConceptScore W2081699585C155512373 @default.
- W2081699585 hasConceptScore W2081699585C185429906 @default.
- W2081699585 hasConceptScore W2081699585C2776291640 @default.
- W2081699585 hasConceptScore W2081699585C2777206241 @default.
- W2081699585 hasConceptScore W2081699585C28826006 @default.
- W2081699585 hasConceptScore W2081699585C33923547 @default.
- W2081699585 hasConceptScore W2081699585C41008148 @default.
- W2081699585 hasConceptScore W2081699585C45923927 @default.
- W2081699585 hasConceptScore W2081699585C49392186 @default.
- W2081699585 hasConceptScore W2081699585C49847556 @default.
- W2081699585 hasConceptScore W2081699585C58041806 @default.
- W2081699585 hasConceptScore W2081699585C78458016 @default.
- W2081699585 hasConceptScore W2081699585C86803240 @default.
- W2081699585 hasConceptScore W2081699585C9357733 @default.
- W2081699585 hasConceptScore W2081699585C9936470 @default.
- W2081699585 hasLocation W20816995851 @default.
- W2081699585 hasOpenAccess W2081699585 @default.
- W2081699585 hasPrimaryLocation W20816995851 @default.
- W2081699585 hasRelatedWork W1519775745 @default.
- W2081699585 hasRelatedWork W1529416950 @default.
- W2081699585 hasRelatedWork W1634075355 @default.
- W2081699585 hasRelatedWork W1786747023 @default.
- W2081699585 hasRelatedWork W1911131141 @default.
- W2081699585 hasRelatedWork W1994501940 @default.
- W2081699585 hasRelatedWork W2050767557 @default.
- W2081699585 hasRelatedWork W2055961818 @default.
- W2081699585 hasRelatedWork W2084864582 @default.
- W2081699585 hasRelatedWork W2110618086 @default.
- W2081699585 hasRelatedWork W2126934023 @default.
- W2081699585 hasRelatedWork W2163930361 @default.
- W2081699585 hasRelatedWork W2392247449 @default.
- W2081699585 hasRelatedWork W2420214732 @default.
- W2081699585 hasRelatedWork W2461978052 @default.
- W2081699585 hasRelatedWork W2494165987 @default.
- W2081699585 hasRelatedWork W2574666645 @default.
- W2081699585 hasRelatedWork W312134214 @default.
- W2081699585 hasRelatedWork W35749889 @default.
- W2081699585 hasRelatedWork W175964095 @default.
- W2081699585 isParatext "false" @default.
- W2081699585 isRetracted "false" @default.
- W2081699585 magId "2081699585" @default.
- W2081699585 workType "article" @default.