Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081763325> ?p ?o ?g. }
- W2081763325 endingPage "346" @default.
- W2081763325 startingPage "303" @default.
- W2081763325 abstract "We present a comprehensive survey of combinatorial algorithms and theorems about lattice protein folding models obtained in the almost 15 years since the publication in 1995 of the first protein folding approximation algorithm with mathematically guaranteed error bounds. The results presented here are mainly about the HP-protein folding model introduced by Ken Dill in 1985. The main topics of this survey include: approximation algorithms for linear-chain and side-chain lattice models, as well as off-lattice models, NP-completeness theorems about a variety of protein folding models, contact map structure of self-avoiding walks and HP-folds, combinatorics and algorithmics for side-chain models, bi-sphere packing and the Kepler conjecture, and the protein sidechain self-assembly conjecture. As an appealing bridge between the hybrid of continuous mathematics and discrete mathematics, a cornerstone of the mathematical difficulty of the protein folding problem, we show how work on 2D self-avoiding walks contact-map decomposition can build upon the exact RNA contacts counting formula by Mike Waterman and collaborators leading to renewed hope for analytical closed-form approximations for statistical mechanics of protein folding in lattice models. We also include in this paper a few new results, research directions within reach of rigorous results, and a set of open problems that merit future exploration." @default.
- W2081763325 created "2016-06-24" @default.
- W2081763325 creator A5066189305 @default.
- W2081763325 creator A5075099631 @default.
- W2081763325 date "2009-01-01" @default.
- W2081763325 modified "2023-10-02" @default.
- W2081763325 title "Combinatorial Algorithms for Protein Folding in Lattice Models: A Survey of Mathematical Results" @default.
- W2081763325 cites W1482204937 @default.
- W2081763325 cites W1538803838 @default.
- W2081763325 cites W1544223463 @default.
- W2081763325 cites W1547596077 @default.
- W2081763325 cites W1550665603 @default.
- W2081763325 cites W1555118959 @default.
- W2081763325 cites W1593339197 @default.
- W2081763325 cites W1822017463 @default.
- W2081763325 cites W1916412816 @default.
- W2081763325 cites W1965838279 @default.
- W2081763325 cites W1966202257 @default.
- W2081763325 cites W1966521833 @default.
- W2081763325 cites W1975017420 @default.
- W2081763325 cites W1975168057 @default.
- W2081763325 cites W1975414367 @default.
- W2081763325 cites W1976493332 @default.
- W2081763325 cites W1980705387 @default.
- W2081763325 cites W1982950011 @default.
- W2081763325 cites W1984527736 @default.
- W2081763325 cites W1987446297 @default.
- W2081763325 cites W1988121996 @default.
- W2081763325 cites W1991115149 @default.
- W2081763325 cites W1993762285 @default.
- W2081763325 cites W1995990042 @default.
- W2081763325 cites W1996161348 @default.
- W2081763325 cites W2002098814 @default.
- W2081763325 cites W2006253061 @default.
- W2081763325 cites W2008073095 @default.
- W2081763325 cites W2011039300 @default.
- W2081763325 cites W2013255051 @default.
- W2081763325 cites W2013842855 @default.
- W2081763325 cites W2016464050 @default.
- W2081763325 cites W2022595002 @default.
- W2081763325 cites W2023790301 @default.
- W2081763325 cites W2024759709 @default.
- W2081763325 cites W2026211446 @default.
- W2081763325 cites W2032008622 @default.
- W2081763325 cites W2033568678 @default.
- W2081763325 cites W2033633841 @default.
- W2081763325 cites W2034852683 @default.
- W2081763325 cites W2036910311 @default.
- W2081763325 cites W2037563043 @default.
- W2081763325 cites W2039992864 @default.
- W2081763325 cites W2040411019 @default.
- W2081763325 cites W2044245711 @default.
- W2081763325 cites W2045777307 @default.
- W2081763325 cites W2048583196 @default.
- W2081763325 cites W2048620321 @default.
- W2081763325 cites W2049651649 @default.
- W2081763325 cites W2054557822 @default.
- W2081763325 cites W2056633203 @default.
- W2081763325 cites W2062904640 @default.
- W2081763325 cites W2063320403 @default.
- W2081763325 cites W2064651547 @default.
- W2081763325 cites W2070327606 @default.
- W2081763325 cites W2070783701 @default.
- W2081763325 cites W2072325285 @default.
- W2081763325 cites W2079335149 @default.
- W2081763325 cites W2080382112 @default.
- W2081763325 cites W2082110103 @default.
- W2081763325 cites W2082296224 @default.
- W2081763325 cites W2085196396 @default.
- W2081763325 cites W2085277871 @default.
- W2081763325 cites W2085764610 @default.
- W2081763325 cites W209099454 @default.
- W2081763325 cites W2092292464 @default.
- W2081763325 cites W2093757673 @default.
- W2081763325 cites W2094661877 @default.
- W2081763325 cites W2095067437 @default.
- W2081763325 cites W2108067237 @default.
- W2081763325 cites W2110476236 @default.
- W2081763325 cites W2114899912 @default.
- W2081763325 cites W2118768650 @default.
- W2081763325 cites W2119619424 @default.
- W2081763325 cites W2129020329 @default.
- W2081763325 cites W2130993330 @default.
- W2081763325 cites W2131195071 @default.
- W2081763325 cites W2136567909 @default.
- W2081763325 cites W2137105118 @default.
- W2081763325 cites W2137955461 @default.
- W2081763325 cites W2151560303 @default.
- W2081763325 cites W2170472690 @default.
- W2081763325 cites W2178631187 @default.
- W2081763325 cites W225035691 @default.
- W2081763325 cites W2314094516 @default.
- W2081763325 cites W2323419813 @default.
- W2081763325 cites W2354779353 @default.
- W2081763325 cites W2400324302 @default.
- W2081763325 cites W2406586316 @default.
- W2081763325 cites W2568071683 @default.
- W2081763325 cites W2611927968 @default.