Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081939405> ?p ?o ?g. }
- W2081939405 endingPage "83" @default.
- W2081939405 startingPage "71" @default.
- W2081939405 abstract "Concerns about bycatch of protected species have become a dominant factor shaping fisheries management. However, efforts to mitigate bycatch are often hindered by a lack of data on the distributions of fishing effort and protected species. One approach to overcoming this problem has been to overlay the distribution of past fishing effort with known locations of protected species, often obtained through satellite telemetry and occurrence data, to identify potential bycatch hotspots. This approach, however, generates static bycatch risk maps, calling into question their ability to forecast into the future, particularly when dealing with spatiotemporally dynamic fisheries and highly migratory bycatch species. In this study, we use boosted regression trees to model the spatiotemporal distribution of fishing effort for two distinct fisheries in the North Pacific Ocean, the albacore (Thunnus alalunga) troll fishery and the California drift gillnet fishery that targets swordfish (Xiphias gladius). Our results suggest that it is possible to accurately predict fishing effort using <10 readily available predictor variables (cross-validated correlations between model predictions and observed data ∼0.6). Although the two fisheries are quite different in their gears and fishing areas, their respective models had high predictive ability, even when input data sets were restricted to a fraction of the full time series. The implications for conservation and management are encouraging: Across a range of target species, fishing methods, and spatial scales, even a relatively short time series of fisheries data may suffice to accurately predict the location of fishing effort into the future. In combination with species distribution modeling of bycatch species, this approach holds promise as a mitigation tool when observer data are limited. Even in data-rich regions, modeling fishing effort and bycatch may provide more accurate estimates of bycatch risk than partial observer coverage for fisheries and bycatch species that are heavily influenced by dynamic oceanographic conditions." @default.
- W2081939405 created "2016-06-24" @default.
- W2081939405 creator A5037886219 @default.
- W2081939405 creator A5045897972 @default.
- W2081939405 creator A5060602492 @default.
- W2081939405 creator A5080761769 @default.
- W2081939405 date "2014-01-01" @default.
- W2081939405 modified "2023-10-04" @default.
- W2081939405 title "Prediction of fishing effort distributions using boosted regression trees" @default.
- W2081939405 cites W1545444999 @default.
- W2081939405 cites W1662882894 @default.
- W2081939405 cites W1966726255 @default.
- W2081939405 cites W1968928924 @default.
- W2081939405 cites W1981924779 @default.
- W2081939405 cites W1989038012 @default.
- W2081939405 cites W1993634114 @default.
- W2081939405 cites W2017054878 @default.
- W2081939405 cites W2033018994 @default.
- W2081939405 cites W2051980781 @default.
- W2081939405 cites W2052995471 @default.
- W2081939405 cites W2059616280 @default.
- W2081939405 cites W2063628002 @default.
- W2081939405 cites W2077359320 @default.
- W2081939405 cites W2080686056 @default.
- W2081939405 cites W2082048394 @default.
- W2081939405 cites W2097601813 @default.
- W2081939405 cites W2101842079 @default.
- W2081939405 cites W2124258279 @default.
- W2081939405 cites W2125763044 @default.
- W2081939405 cites W2128831110 @default.
- W2081939405 cites W2133634924 @default.
- W2081939405 cites W2135695572 @default.
- W2081939405 cites W2144292431 @default.
- W2081939405 cites W2158873037 @default.
- W2081939405 cites W2166606947 @default.
- W2081939405 cites W2177299793 @default.
- W2081939405 cites W2035481759 @default.
- W2081939405 doi "https://doi.org/10.1890/12-0826.1" @default.
- W2081939405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24640535" @default.
- W2081939405 hasPublicationYear "2014" @default.
- W2081939405 type Work @default.
- W2081939405 sameAs 2081939405 @default.
- W2081939405 citedByCount "71" @default.
- W2081939405 countsByYear W20819394052014 @default.
- W2081939405 countsByYear W20819394052015 @default.
- W2081939405 countsByYear W20819394052016 @default.
- W2081939405 countsByYear W20819394052017 @default.
- W2081939405 countsByYear W20819394052018 @default.
- W2081939405 countsByYear W20819394052019 @default.
- W2081939405 countsByYear W20819394052020 @default.
- W2081939405 countsByYear W20819394052021 @default.
- W2081939405 countsByYear W20819394052022 @default.
- W2081939405 countsByYear W20819394052023 @default.
- W2081939405 crossrefType "journal-article" @default.
- W2081939405 hasAuthorship W2081939405A5037886219 @default.
- W2081939405 hasAuthorship W2081939405A5045897972 @default.
- W2081939405 hasAuthorship W2081939405A5060602492 @default.
- W2081939405 hasAuthorship W2081939405A5080761769 @default.
- W2081939405 hasConcept C127413603 @default.
- W2081939405 hasConcept C146978453 @default.
- W2081939405 hasConcept C149340888 @default.
- W2081939405 hasConcept C18903297 @default.
- W2081939405 hasConcept C202041845 @default.
- W2081939405 hasConcept C204323151 @default.
- W2081939405 hasConcept C205649164 @default.
- W2081939405 hasConcept C2778327988 @default.
- W2081939405 hasConcept C2780127386 @default.
- W2081939405 hasConcept C2780532849 @default.
- W2081939405 hasConcept C2909208804 @default.
- W2081939405 hasConcept C39432304 @default.
- W2081939405 hasConcept C505870484 @default.
- W2081939405 hasConcept C514101110 @default.
- W2081939405 hasConcept C86803240 @default.
- W2081939405 hasConceptScore W2081939405C127413603 @default.
- W2081939405 hasConceptScore W2081939405C146978453 @default.
- W2081939405 hasConceptScore W2081939405C149340888 @default.
- W2081939405 hasConceptScore W2081939405C18903297 @default.
- W2081939405 hasConceptScore W2081939405C202041845 @default.
- W2081939405 hasConceptScore W2081939405C204323151 @default.
- W2081939405 hasConceptScore W2081939405C205649164 @default.
- W2081939405 hasConceptScore W2081939405C2778327988 @default.
- W2081939405 hasConceptScore W2081939405C2780127386 @default.
- W2081939405 hasConceptScore W2081939405C2780532849 @default.
- W2081939405 hasConceptScore W2081939405C2909208804 @default.
- W2081939405 hasConceptScore W2081939405C39432304 @default.
- W2081939405 hasConceptScore W2081939405C505870484 @default.
- W2081939405 hasConceptScore W2081939405C514101110 @default.
- W2081939405 hasConceptScore W2081939405C86803240 @default.
- W2081939405 hasIssue "1" @default.
- W2081939405 hasLocation W20819394051 @default.
- W2081939405 hasLocation W20819394052 @default.
- W2081939405 hasOpenAccess W2081939405 @default.
- W2081939405 hasPrimaryLocation W20819394051 @default.
- W2081939405 hasRelatedWork W1988241348 @default.
- W2081939405 hasRelatedWork W1988786670 @default.
- W2081939405 hasRelatedWork W2081939405 @default.
- W2081939405 hasRelatedWork W2182899354 @default.
- W2081939405 hasRelatedWork W2186785147 @default.