Matches in SemOpenAlex for { <https://semopenalex.org/work/W2081995404> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2081995404 endingPage "304" @default.
- W2081995404 startingPage "302" @default.
- W2081995404 abstract "Myocardial perfusion imaging (MPI) SPECT is well established in the diagnosis, monitoring response to treatment and risk stratification in patients with known or suspected coronary artery disease (CAD). PET enables quantitative assessment of myocardial blood flow (MBF, in millilitres per gram per minute) and coronary flow reserve (CFR), and quantification with O-water, N-ammonia and recently Rb has been validated over a wide range of blood flows in animal models and humans [1–4]. Quantitative assessment of MBF has been shown to improve the diagnostic accuracy of conventional MPI with SPECT or PET, to improve cardiac risk assessment and to predict outcome [5–7]. Quantitation of MBF enables absolute assessment of myocardial flow and vasodilator reserve without the assumption of a normal reference region [8]. Therefore, the limitation of conventional MPI (underestimation of the extent and severity of multivessel CAD, when tracer uptake in the best-perfused myocardial region does not represent normally perfused myocardium) can be overcome by the use of absolute quantitation [9]. Whereas PET is very costly and complex, SPECT systems are widely used for the assessment of myocardial perfusion in patients for the diagnosis and management of CAD. However, quantitative assessment with SPECT has been limited. To enable quantitation with SPECT a multidetector system is required to permit fast acquisition of dynamic data in 5 – 10 s, and a suitable SPECT tracer is necessary. Transmission imaging for attenuation correction will allow accurate quantitation. Quantification of myocardial perfusion reserve has been attempted using SPECT and Tl in dogs [10] and Tc-labelled tracers [10–12]. Dynamic SPECT imaging using multidetector SPECT systems and kinetic modelling of Tc-teboroxime has shown good correlation with microsphere-determined blood flow. However, limitations in detector sensitivity and temporal resolution of conventional SPECT systems prohibit further assessment [10, 11]. Another SPECT technique based on first-pass planar imaging followed by conventional SPECTMPI has been used to estimate a retention index of MBF and CFR [12]. This technique has shown a generally good correlation with PETmeasured flow, but CFR is underestimated at high flow rates [13]. The use of a retention index to estimate CFR using this method compared to absolute MBF from PET results in an underestimation of CFR values in the SPECT-based technique, since tracer retention decreases with increasing blood flow [14]. Spatial and timing resolution are poorer with SPECT and the tracer retention index underestimates CFR compared to quantitative PET. SPECT is indeed simpler than PET but this technique, unlike PET, does not include dynamic acquisition of tomographic data. In addition, the technique works only for tracers that act like microspheres, showing a constant extraction over a large range of flow rates and showing no washout from the time of injection to the time of measurement. Conventional SPECT systems are limited in the dynamic collection of tomographic data. These systems consist of slowly rotating cameras with large detectors. The detectors’ orbit is limited by mechanical as well as safety factors and the angular projections obtained are inconsistent, resulting in blurred images and possible bias in the estimated kinetic parameters. In addition, conventional detector crystals suffer S. Ben-Haim Institute of Nuclear Medicine, University College London, University College Hospital, London, UK" @default.
- W2081995404 created "2016-06-24" @default.
- W2081995404 creator A5022614114 @default.
- W2081995404 creator A5023547493 @default.
- W2081995404 date "2014-10-24" @default.
- W2081995404 modified "2023-10-14" @default.
- W2081995404 title "Dynamic SPECT: evolution of a widely available tool for the assessment of coronary flow reserve" @default.
- W2081995404 cites W1967375447 @default.
- W2081995404 cites W1973612555 @default.
- W2081995404 cites W1991156492 @default.
- W2081995404 cites W2007247609 @default.
- W2081995404 cites W2024544497 @default.
- W2081995404 cites W2026346501 @default.
- W2081995404 cites W2035226883 @default.
- W2081995404 cites W2041300144 @default.
- W2081995404 cites W2047260901 @default.
- W2081995404 cites W2067678371 @default.
- W2081995404 cites W2068668193 @default.
- W2081995404 cites W2094078131 @default.
- W2081995404 cites W2101293566 @default.
- W2081995404 cites W2107892208 @default.
- W2081995404 cites W2110170849 @default.
- W2081995404 cites W2118623957 @default.
- W2081995404 cites W2124144555 @default.
- W2081995404 cites W2145164028 @default.
- W2081995404 cites W2151685421 @default.
- W2081995404 cites W2154342279 @default.
- W2081995404 cites W2160040387 @default.
- W2081995404 cites W2167692910 @default.
- W2081995404 cites W2740129689 @default.
- W2081995404 doi "https://doi.org/10.1007/s00259-014-2929-x" @default.
- W2081995404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25341669" @default.
- W2081995404 hasPublicationYear "2014" @default.
- W2081995404 type Work @default.
- W2081995404 sameAs 2081995404 @default.
- W2081995404 citedByCount "12" @default.
- W2081995404 countsByYear W20819954042015 @default.
- W2081995404 countsByYear W20819954042016 @default.
- W2081995404 countsByYear W20819954042017 @default.
- W2081995404 countsByYear W20819954042018 @default.
- W2081995404 countsByYear W20819954042019 @default.
- W2081995404 countsByYear W20819954042022 @default.
- W2081995404 crossrefType "journal-article" @default.
- W2081995404 hasAuthorship W2081995404A5022614114 @default.
- W2081995404 hasAuthorship W2081995404A5023547493 @default.
- W2081995404 hasBestOaLocation W20819954041 @default.
- W2081995404 hasConcept C126322002 @default.
- W2081995404 hasConcept C164705383 @default.
- W2081995404 hasConcept C19527891 @default.
- W2081995404 hasConcept C2777987666 @default.
- W2081995404 hasConcept C2778213512 @default.
- W2081995404 hasConcept C2778707443 @default.
- W2081995404 hasConcept C2989005 @default.
- W2081995404 hasConcept C3019004856 @default.
- W2081995404 hasConcept C500558357 @default.
- W2081995404 hasConcept C71924100 @default.
- W2081995404 hasConceptScore W2081995404C126322002 @default.
- W2081995404 hasConceptScore W2081995404C164705383 @default.
- W2081995404 hasConceptScore W2081995404C19527891 @default.
- W2081995404 hasConceptScore W2081995404C2777987666 @default.
- W2081995404 hasConceptScore W2081995404C2778213512 @default.
- W2081995404 hasConceptScore W2081995404C2778707443 @default.
- W2081995404 hasConceptScore W2081995404C2989005 @default.
- W2081995404 hasConceptScore W2081995404C3019004856 @default.
- W2081995404 hasConceptScore W2081995404C500558357 @default.
- W2081995404 hasConceptScore W2081995404C71924100 @default.
- W2081995404 hasIssue "2" @default.
- W2081995404 hasLocation W20819954041 @default.
- W2081995404 hasLocation W20819954042 @default.
- W2081995404 hasOpenAccess W2081995404 @default.
- W2081995404 hasPrimaryLocation W20819954041 @default.
- W2081995404 hasRelatedWork W1495725644 @default.
- W2081995404 hasRelatedWork W1692191583 @default.
- W2081995404 hasRelatedWork W2027249360 @default.
- W2081995404 hasRelatedWork W2102522830 @default.
- W2081995404 hasRelatedWork W2595671560 @default.
- W2081995404 hasRelatedWork W2888391673 @default.
- W2081995404 hasRelatedWork W3032522106 @default.
- W2081995404 hasRelatedWork W3208460416 @default.
- W2081995404 hasRelatedWork W4220740928 @default.
- W2081995404 hasRelatedWork W4286721830 @default.
- W2081995404 hasVolume "42" @default.
- W2081995404 isParatext "false" @default.
- W2081995404 isRetracted "false" @default.
- W2081995404 magId "2081995404" @default.
- W2081995404 workType "article" @default.