Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082081223> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2082081223 abstract "Introduction. In this paper we show the following statement: Let F be a codimension-1 transversely oriented foliation of a closed oriented 3manifold M. The Godbillon-Vey invariant of F is zero if and only ifF is foliated cobordant to a codimension-1 transversely oriented foliation of a closed oriented 3-manifold N and there exists a sequence of nullcobordant codimension-1 foliations of N converging to. Two codimension-1 transversely oriented foliations (M, F) and (N,) of closed oriented n-manifolds are foliated cobordant if there exists a codimension-1 transversely oriented foliation (W,O of a compact oriented (n+1)-manifold such thatW (-M) [N, is transverse toW and the restrictions JI’[M and /’lN coincide with F and , respectively. The foliated cobordism classes form an additive group. Fgn,1. The foliations (M,) representing the zero of the foliated cobordism group are those cobordant to the empty set. We say they are null-cobordant. The Godbillon-Vey invariant for a codimension-1 transversely oriented foliation F was defined as follows ([7]). Let w be a 1-form defining F. The integrability condition is the existence of 1-form such thatdw=/. Then the 3-form ]/d is closed and its cohomology class depends only on the foliation F. If F is a codimension-1 transversely oriented foliation of a closed oriented 3-manifold M, then the Godbillon-Vey invariant is the integral of this 3-form. There are two properties which follow easily from the definition ([7]). One is that this invariant depends only on the cobordism class of the foliations. This is an easy consequence of the Stokes theorem. The other is that this invariant varies continuously when we deform the foliation. The reason is that the 1-form can be taken to be the Lie derivative Lzo, where X is a vector field such that w(X)=l. The examples for these continuous variations were given by Thurston ([15]), and hence we have a surjective homomorphism fi3,i-+R. The natural question on the injectivity is still an open question. We can ask a weaker question. By the property of continuous variation of GV, if a foliation is approximated by null-cobordant foliations, its GV is zero. Moreover, if a foliation is cobordant to such an approximable foliation, then its GV is zero. Now the weaker question is whether the" @default.
- W2082081223 created "2016-06-24" @default.
- W2082081223 creator A5009131134 @default.
- W2082081223 date "1992-01-01" @default.
- W2082081223 modified "2023-10-18" @default.
- W2082081223 title "The Godbillon-Vey invariant and the foliated cobordism group" @default.
- W2082081223 cites W1516359396 @default.
- W2082081223 cites W18463486 @default.
- W2082081223 cites W1973125885 @default.
- W2082081223 cites W2005454917 @default.
- W2082081223 cites W2016778608 @default.
- W2082081223 cites W2016941358 @default.
- W2082081223 cites W2038793857 @default.
- W2082081223 cites W2059754311 @default.
- W2082081223 cites W2081860897 @default.
- W2082081223 cites W2089386272 @default.
- W2082081223 cites W2315367087 @default.
- W2082081223 cites W2317108891 @default.
- W2082081223 cites W2329141753 @default.
- W2082081223 cites W4205553456 @default.
- W2082081223 cites W4230156913 @default.
- W2082081223 cites W4238096216 @default.
- W2082081223 cites W4249265028 @default.
- W2082081223 doi "https://doi.org/10.3792/pjaa.68.85" @default.
- W2082081223 hasPublicationYear "1992" @default.
- W2082081223 type Work @default.
- W2082081223 sameAs 2082081223 @default.
- W2082081223 citedByCount "6" @default.
- W2082081223 countsByYear W20820812232021 @default.
- W2082081223 crossrefType "journal-article" @default.
- W2082081223 hasAuthorship W2082081223A5009131134 @default.
- W2082081223 hasBestOaLocation W20820812231 @default.
- W2082081223 hasConcept C121332964 @default.
- W2082081223 hasConcept C190470478 @default.
- W2082081223 hasConcept C202444582 @default.
- W2082081223 hasConcept C2781311116 @default.
- W2082081223 hasConcept C33923547 @default.
- W2082081223 hasConcept C37914503 @default.
- W2082081223 hasConcept C56213913 @default.
- W2082081223 hasConcept C62520636 @default.
- W2082081223 hasConceptScore W2082081223C121332964 @default.
- W2082081223 hasConceptScore W2082081223C190470478 @default.
- W2082081223 hasConceptScore W2082081223C202444582 @default.
- W2082081223 hasConceptScore W2082081223C2781311116 @default.
- W2082081223 hasConceptScore W2082081223C33923547 @default.
- W2082081223 hasConceptScore W2082081223C37914503 @default.
- W2082081223 hasConceptScore W2082081223C56213913 @default.
- W2082081223 hasConceptScore W2082081223C62520636 @default.
- W2082081223 hasIssue "4" @default.
- W2082081223 hasLocation W20820812231 @default.
- W2082081223 hasOpenAccess W2082081223 @default.
- W2082081223 hasPrimaryLocation W20820812231 @default.
- W2082081223 hasRelatedWork W1488824746 @default.
- W2082081223 hasRelatedWork W1981909949 @default.
- W2082081223 hasRelatedWork W2002850650 @default.
- W2082081223 hasRelatedWork W2004067396 @default.
- W2082081223 hasRelatedWork W2058033529 @default.
- W2082081223 hasRelatedWork W2063684714 @default.
- W2082081223 hasRelatedWork W2088544526 @default.
- W2082081223 hasRelatedWork W2793321405 @default.
- W2082081223 hasRelatedWork W2901496727 @default.
- W2082081223 hasRelatedWork W4298245064 @default.
- W2082081223 hasVolume "68" @default.
- W2082081223 isParatext "false" @default.
- W2082081223 isRetracted "false" @default.
- W2082081223 magId "2082081223" @default.
- W2082081223 workType "article" @default.