Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082103614> ?p ?o ?g. }
- W2082103614 endingPage "28" @default.
- W2082103614 startingPage "15" @default.
- W2082103614 abstract "S-Adenosylhomocysteine hydrolase (SahH) is involved in the degradation of the compound which inhibits methylation reactions. Using a Bayesian approach and other methods, we reconstructed a phylogenetic tree of amino acid sequences of this protein originating from all three major domains of living organisms. The SahH sequences formed two major branches: one composed mainly of Archaea and the other of eukaryotes and majority of bacteria, clearly contradicting the three-domain topology shown by small subunit rRNA gene. This topology suggests the occurrence of lateral transfer of this gene between the domains. Poor resolution of eukaryotes and bacteria excluded an ultimate conclusion in which out of the two domains this gene appeared first, however, the congruence of the secondary branches with SS rRNA and/or concatenated ribosomal protein datasets phylogenies suggested an “early” acquisition by some bacterial and eukaryotic phyla. Similarly, the branching pattern of Archaea reflected the phylogenies shown by SS rRNA and ribosomal proteins. SahH is widespread in Eucarya, albeit, due to reductive evolution, it is missing in the intracellular parasite Encephalitozoon cuniculi. On the other hand, the lack of affinity to the sequences from the α-Proteobacteria and cyanobacteria excludes a possibility of its acquisition in the course of mitochondrial or chloroplast endosymbioses. Unlike Archaea, most bacteria carry MTA/SAH nucleosidase, an enzyme involved also in metabolism of methylthioadenosine. However, the double function of MTA/SAH nucleosidase may be a barrier to ensure the efficient degradation of S-adenosylhomocysteine, specially when the intensity of methylation processes is high. This would explain the presence of S-adenosylhomocysteine hydrolase in the bacteria that have more complex metabolism. On the other hand, majority of obligate pathogenic bacteria due to simpler metabolism rely entirely on MTA/SAH nucleosidase. This could explain the observed phenetic pattern in which bacteria with larger (>6 Mb—million base pairs) genomes carry SAH hydrolase, whereas bacteria that have undergone reductive evolution usually carry MTA/SAH nucleosidase. This suggests that the presence or acquisition of S-adenosylhomocysteine hydrolase in bacteria may predispose towards higher metabolic, and in consequence, higher genomic complexity. The good examples are the phototrophic bacteria all of which carry this gene, however, the SahH phylogeny shows lack of congruence with SSU rRNA and photosyntethic genes, implying that the acquisition was independent and presumably preceded the acquisition of photosyntethic genes. The majority of cyanobacteria acquired this gene from Archaea, however, in some species the sahH gene was replaced by a copy from the β- or γ-Proteobacteria." @default.
- W2082103614 created "2016-06-24" @default.
- W2082103614 creator A5015181688 @default.
- W2082103614 creator A5030956725 @default.
- W2082103614 creator A5031481144 @default.
- W2082103614 creator A5067800989 @default.
- W2082103614 creator A5073712330 @default.
- W2082103614 date "2005-01-01" @default.
- W2082103614 modified "2023-10-17" @default.
- W2082103614 title "Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences" @default.
- W2082103614 cites W104710838 @default.
- W2082103614 cites W1490286156 @default.
- W2082103614 cites W1516677723 @default.
- W2082103614 cites W1546639740 @default.
- W2082103614 cites W1566673051 @default.
- W2082103614 cites W1571205912 @default.
- W2082103614 cites W1627698625 @default.
- W2082103614 cites W1669459870 @default.
- W2082103614 cites W1963657604 @default.
- W2082103614 cites W1978814986 @default.
- W2082103614 cites W1988837361 @default.
- W2082103614 cites W1996071843 @default.
- W2082103614 cites W2005785215 @default.
- W2082103614 cites W2009219904 @default.
- W2082103614 cites W2013455102 @default.
- W2082103614 cites W2017519756 @default.
- W2082103614 cites W2031308714 @default.
- W2082103614 cites W2034295560 @default.
- W2082103614 cites W2040438092 @default.
- W2082103614 cites W2059206728 @default.
- W2082103614 cites W2059242069 @default.
- W2082103614 cites W2062469063 @default.
- W2082103614 cites W2064462284 @default.
- W2082103614 cites W2067444151 @default.
- W2082103614 cites W2070889260 @default.
- W2082103614 cites W2073760752 @default.
- W2082103614 cites W2074675159 @default.
- W2082103614 cites W2074712237 @default.
- W2082103614 cites W2076577334 @default.
- W2082103614 cites W2078028724 @default.
- W2082103614 cites W2080784930 @default.
- W2082103614 cites W2081113657 @default.
- W2082103614 cites W2089444141 @default.
- W2082103614 cites W2092553727 @default.
- W2082103614 cites W2093259598 @default.
- W2082103614 cites W2097117583 @default.
- W2082103614 cites W2097382368 @default.
- W2082103614 cites W2098386120 @default.
- W2082103614 cites W2098897042 @default.
- W2082103614 cites W2099823964 @default.
- W2082103614 cites W2102131597 @default.
- W2082103614 cites W2102736136 @default.
- W2082103614 cites W2118025286 @default.
- W2082103614 cites W2119632499 @default.
- W2082103614 cites W2125974750 @default.
- W2082103614 cites W2126033097 @default.
- W2082103614 cites W2126161931 @default.
- W2082103614 cites W2126487146 @default.
- W2082103614 cites W2126763121 @default.
- W2082103614 cites W2127031596 @default.
- W2082103614 cites W2142735254 @default.
- W2082103614 cites W2151614109 @default.
- W2082103614 cites W2158897609 @default.
- W2082103614 cites W2161444534 @default.
- W2082103614 cites W2163059672 @default.
- W2082103614 cites W2164217177 @default.
- W2082103614 cites W2164789250 @default.
- W2082103614 cites W2166865790 @default.
- W2082103614 cites W2169881490 @default.
- W2082103614 cites W3199943451 @default.
- W2082103614 cites W3010157496 @default.
- W2082103614 doi "https://doi.org/10.1016/j.ympev.2004.09.008" @default.
- W2082103614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15579379" @default.
- W2082103614 hasPublicationYear "2005" @default.
- W2082103614 type Work @default.
- W2082103614 sameAs 2082103614 @default.
- W2082103614 citedByCount "31" @default.
- W2082103614 countsByYear W20821036142012 @default.
- W2082103614 countsByYear W20821036142013 @default.
- W2082103614 countsByYear W20821036142014 @default.
- W2082103614 countsByYear W20821036142015 @default.
- W2082103614 countsByYear W20821036142017 @default.
- W2082103614 countsByYear W20821036142018 @default.
- W2082103614 countsByYear W20821036142020 @default.
- W2082103614 countsByYear W20821036142021 @default.
- W2082103614 countsByYear W20821036142022 @default.
- W2082103614 countsByYear W20821036142023 @default.
- W2082103614 crossrefType "journal-article" @default.
- W2082103614 hasAuthorship W2082103614A5015181688 @default.
- W2082103614 hasAuthorship W2082103614A5030956725 @default.
- W2082103614 hasAuthorship W2082103614A5031481144 @default.
- W2082103614 hasAuthorship W2082103614A5067800989 @default.
- W2082103614 hasAuthorship W2082103614A5073712330 @default.
- W2082103614 hasConcept C104317684 @default.
- W2082103614 hasConcept C193252679 @default.
- W2082103614 hasConcept C2779676784 @default.
- W2082103614 hasConcept C38062823 @default.
- W2082103614 hasConcept C42062724 @default.