Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082174016> ?p ?o ?g. }
- W2082174016 endingPage "537" @default.
- W2082174016 startingPage "527" @default.
- W2082174016 abstract "Suppose that we are interested in establishing simple but reliable rules for predicting future t-year survivors through censored regression models. In this article we present inference procedures for evaluating such binary classification rules based on various prediction precision measures quantified by the overall misclassification rate, sensitivity and specificity, and positive and negative predictive values. Specifically, under various working models, we derive consistent estimators for the above measures through substitution and cross-validation estimation procedures. Furthermore, we provide large-sample approximations to the distributions of these nonsmooth estimators without assuming that the working model is correctly specified. Confidence intervals, for example, for the difference of the precision measures between two competing rules can then be constructed. All of the proposals are illustrated with real examples, and their finite-sample properties are evaluated through a simulation study." @default.
- W2082174016 created "2016-06-24" @default.
- W2082174016 creator A5016639693 @default.
- W2082174016 creator A5043594157 @default.
- W2082174016 creator A5077058201 @default.
- W2082174016 creator A5078003862 @default.
- W2082174016 date "2007-06-01" @default.
- W2082174016 modified "2023-10-09" @default.
- W2082174016 title "Evaluating Prediction Rules for<i>t</i>-Year Survivors With Censored Regression Models" @default.
- W2082174016 cites W1497683195 @default.
- W2082174016 cites W1502338185 @default.
- W2082174016 cites W1506069954 @default.
- W2082174016 cites W1509445416 @default.
- W2082174016 cites W1539462193 @default.
- W2082174016 cites W1580788756 @default.
- W2082174016 cites W1594031697 @default.
- W2082174016 cites W1966698674 @default.
- W2082174016 cites W1997427494 @default.
- W2082174016 cites W2007372317 @default.
- W2082174016 cites W2010628651 @default.
- W2082174016 cites W2024161327 @default.
- W2082174016 cites W2028331288 @default.
- W2082174016 cites W2034442655 @default.
- W2082174016 cites W2040615655 @default.
- W2082174016 cites W2041902797 @default.
- W2082174016 cites W2057968703 @default.
- W2082174016 cites W2073241381 @default.
- W2082174016 cites W2079356438 @default.
- W2082174016 cites W2082883684 @default.
- W2082174016 cites W2084396669 @default.
- W2082174016 cites W2085589518 @default.
- W2082174016 cites W2091338162 @default.
- W2082174016 cites W2097879961 @default.
- W2082174016 cites W2099620796 @default.
- W2082174016 cites W2109242212 @default.
- W2082174016 cites W2110259597 @default.
- W2082174016 cites W2117812871 @default.
- W2082174016 cites W2121514893 @default.
- W2082174016 cites W2123664981 @default.
- W2082174016 cites W2124181495 @default.
- W2082174016 cites W2127314075 @default.
- W2082174016 cites W2129476886 @default.
- W2082174016 cites W2141570612 @default.
- W2082174016 cites W2141861294 @default.
- W2082174016 cites W2147243255 @default.
- W2082174016 cites W2160450758 @default.
- W2082174016 cites W2477400917 @default.
- W2082174016 cites W2480610976 @default.
- W2082174016 cites W2796700885 @default.
- W2082174016 cites W3026721701 @default.
- W2082174016 cites W3085162807 @default.
- W2082174016 cites W3101649135 @default.
- W2082174016 cites W3125855424 @default.
- W2082174016 cites W1999058847 @default.
- W2082174016 cites W2154386868 @default.
- W2082174016 cites W2154415584 @default.
- W2082174016 cites W2995133996 @default.
- W2082174016 doi "https://doi.org/10.1198/016214507000000149" @default.
- W2082174016 hasPublicationYear "2007" @default.
- W2082174016 type Work @default.
- W2082174016 sameAs 2082174016 @default.
- W2082174016 citedByCount "288" @default.
- W2082174016 countsByYear W20821740162012 @default.
- W2082174016 countsByYear W20821740162013 @default.
- W2082174016 countsByYear W20821740162014 @default.
- W2082174016 countsByYear W20821740162015 @default.
- W2082174016 countsByYear W20821740162016 @default.
- W2082174016 countsByYear W20821740162017 @default.
- W2082174016 countsByYear W20821740162018 @default.
- W2082174016 countsByYear W20821740162019 @default.
- W2082174016 countsByYear W20821740162020 @default.
- W2082174016 countsByYear W20821740162021 @default.
- W2082174016 countsByYear W20821740162022 @default.
- W2082174016 countsByYear W20821740162023 @default.
- W2082174016 crossrefType "journal-article" @default.
- W2082174016 hasAuthorship W2082174016A5016639693 @default.
- W2082174016 hasAuthorship W2082174016A5043594157 @default.
- W2082174016 hasAuthorship W2082174016A5077058201 @default.
- W2082174016 hasAuthorship W2082174016A5078003862 @default.
- W2082174016 hasConcept C105795698 @default.
- W2082174016 hasConcept C149782125 @default.
- W2082174016 hasConcept C152877465 @default.
- W2082174016 hasConcept C154945302 @default.
- W2082174016 hasConcept C185429906 @default.
- W2082174016 hasConcept C185592680 @default.
- W2082174016 hasConcept C198531522 @default.
- W2082174016 hasConcept C2776214188 @default.
- W2082174016 hasConcept C33923547 @default.
- W2082174016 hasConcept C41008148 @default.
- W2082174016 hasConcept C43617362 @default.
- W2082174016 hasConcept C44249647 @default.
- W2082174016 hasConcept C48372109 @default.
- W2082174016 hasConcept C83546350 @default.
- W2082174016 hasConcept C94375191 @default.
- W2082174016 hasConceptScore W2082174016C105795698 @default.
- W2082174016 hasConceptScore W2082174016C149782125 @default.
- W2082174016 hasConceptScore W2082174016C152877465 @default.
- W2082174016 hasConceptScore W2082174016C154945302 @default.