Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082330740> ?p ?o ?g. }
- W2082330740 endingPage "032305" @default.
- W2082330740 startingPage "032305" @default.
- W2082330740 abstract "Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. Results: On a cohort of 50 breast DCE-MRI studies, PrEIm yielded overall better region and boundary-based statistics compared to the original DCE-MR image, FCM, and PCA based image representations. Additionally, SEAC outperformed a hybrid AC applied to both PCA and FCM image representations. Mean dice similarity coefficient (DSC) for SEAC was significantly better (DSC = 0.74 ± 0.21) than FCM+AC (DSC = 0.50 ± 0.32) and similar to PCA+AC (DSC = 0.73 ± 0.22). Boundary-based metrics of mean absolute difference and Hausdorff distance followed the same trends. Of the automated segmentation methods, breast lesion classification based on morphologic features derived from SEAC segmentation using a support vector machine classifier also performed better (AUC = 0.67 ± 0.05;p < 0.05) than FCM+AC (AUC = 0.50 ± 0.07), and PCA+AC (AUC = 0.49 ± 0.07). Conclusions: In this work, we presented SEAC, an accurate, general purpose AC segmentation tool that could be applied to any imaging domain that employs time series data. SE allows for projection of time series data into a PrEIm representation so that every voxel is characterized by the dominant eigenvectors, capturing the global and local time-intensity curve similarities in the data. This PrEIm allows for the calculation of strong tensor gradients and better region statistics than the original image intensities or alternative image representations such as PCA and FCM. The PrEIm also allows for building a more accurate hybrid AC scheme." @default.
- W2082330740 created "2016-06-24" @default.
- W2082330740 creator A5027642699 @default.
- W2082330740 creator A5028587115 @default.
- W2082330740 creator A5053654026 @default.
- W2082330740 date "2013-02-28" @default.
- W2082330740 modified "2023-10-17" @default.
- W2082330740 title "Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging" @default.
- W2082330740 cites W1924260482 @default.
- W2082330740 cites W1971743920 @default.
- W2082330740 cites W1980483305 @default.
- W2082330740 cites W1982852576 @default.
- W2082330740 cites W1989044349 @default.
- W2082330740 cites W1992002662 @default.
- W2082330740 cites W1996440595 @default.
- W2082330740 cites W2004918136 @default.
- W2082330740 cites W2005595608 @default.
- W2082330740 cites W2010783536 @default.
- W2082330740 cites W2013007011 @default.
- W2082330740 cites W2016479351 @default.
- W2082330740 cites W2022748280 @default.
- W2082330740 cites W2026356722 @default.
- W2082330740 cites W2026628736 @default.
- W2082330740 cites W2034838676 @default.
- W2082330740 cites W2037803176 @default.
- W2082330740 cites W2045886114 @default.
- W2082330740 cites W2050162407 @default.
- W2082330740 cites W2061568180 @default.
- W2082330740 cites W2068934234 @default.
- W2082330740 cites W2074895886 @default.
- W2082330740 cites W2104095591 @default.
- W2082330740 cites W2116040950 @default.
- W2082330740 cites W2121947440 @default.
- W2082330740 cites W2123887997 @default.
- W2082330740 cites W2133171338 @default.
- W2082330740 cites W2133866056 @default.
- W2082330740 cites W2137344154 @default.
- W2082330740 cites W2142598000 @default.
- W2082330740 cites W2151103091 @default.
- W2082330740 cites W2157848968 @default.
- W2082330740 cites W2160167256 @default.
- W2082330740 cites W2164652569 @default.
- W2082330740 cites W2532359871 @default.
- W2082330740 cites W2914396913 @default.
- W2082330740 cites W3211330693 @default.
- W2082330740 cites W4239510810 @default.
- W2082330740 doi "https://doi.org/10.1118/1.4790466" @default.
- W2082330740 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3598842" @default.
- W2082330740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23464337" @default.
- W2082330740 hasPublicationYear "2013" @default.
- W2082330740 type Work @default.
- W2082330740 sameAs 2082330740 @default.
- W2082330740 citedByCount "21" @default.
- W2082330740 countsByYear W20823307402014 @default.
- W2082330740 countsByYear W20823307402015 @default.
- W2082330740 countsByYear W20823307402016 @default.
- W2082330740 countsByYear W20823307402017 @default.
- W2082330740 countsByYear W20823307402018 @default.
- W2082330740 countsByYear W20823307402019 @default.
- W2082330740 countsByYear W20823307402022 @default.
- W2082330740 crossrefType "journal-article" @default.
- W2082330740 hasAuthorship W2082330740A5027642699 @default.
- W2082330740 hasAuthorship W2082330740A5028587115 @default.
- W2082330740 hasAuthorship W2082330740A5053654026 @default.
- W2082330740 hasBestOaLocation W20823307402 @default.
- W2082330740 hasConcept C105795698 @default.
- W2082330740 hasConcept C112353826 @default.
- W2082330740 hasConcept C115961682 @default.
- W2082330740 hasConcept C117251300 @default.
- W2082330740 hasConcept C124504099 @default.
- W2082330740 hasConcept C126838900 @default.
- W2082330740 hasConcept C143409427 @default.
- W2082330740 hasConcept C153180895 @default.
- W2082330740 hasConcept C154945302 @default.
- W2082330740 hasConcept C31601959 @default.
- W2082330740 hasConcept C31972630 @default.
- W2082330740 hasConcept C33923547 @default.
- W2082330740 hasConcept C41008148 @default.
- W2082330740 hasConcept C54170458 @default.
- W2082330740 hasConcept C71924100 @default.
- W2082330740 hasConcept C78201319 @default.
- W2082330740 hasConcept C89600930 @default.
- W2082330740 hasConceptScore W2082330740C105795698 @default.
- W2082330740 hasConceptScore W2082330740C112353826 @default.
- W2082330740 hasConceptScore W2082330740C115961682 @default.
- W2082330740 hasConceptScore W2082330740C117251300 @default.
- W2082330740 hasConceptScore W2082330740C124504099 @default.
- W2082330740 hasConceptScore W2082330740C126838900 @default.
- W2082330740 hasConceptScore W2082330740C143409427 @default.
- W2082330740 hasConceptScore W2082330740C153180895 @default.
- W2082330740 hasConceptScore W2082330740C154945302 @default.
- W2082330740 hasConceptScore W2082330740C31601959 @default.
- W2082330740 hasConceptScore W2082330740C31972630 @default.
- W2082330740 hasConceptScore W2082330740C33923547 @default.
- W2082330740 hasConceptScore W2082330740C41008148 @default.
- W2082330740 hasConceptScore W2082330740C54170458 @default.
- W2082330740 hasConceptScore W2082330740C71924100 @default.
- W2082330740 hasConceptScore W2082330740C78201319 @default.