Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082892263> ?p ?o ?g. }
- W2082892263 abstract "The basis of this work was to evaluate both parametric and non-parametric empirical modeling strategies applied to signal validation or on-line monitoring tasks. On-line monitoring methods assess signal channel performance to aid in making instrument calibration decisions, enabling the use of condition-based calibration schedules. The three non-linear empirical modeling strategies studied were: artificial neural networks (ANN), neural network partial least squares (NNPLS), and local polynomial regression (LPR). The evaluation of the empirical modeling strategies includes the presentation and derivation of prediction intervals for each of three different model types studied. An estimate and its corresponding prediction interval contain the measurements with a specified certainty, usually 95%. The prediction interval estimates were compared to results obtained from bootstrapping via Monte Carlo resampling, to validate their expected accuracy. Properly determined prediction interval estimates were obtained that consistently captured the uncertainty of the given model such that the level of certainty of the intervals closely matched the observed level of coverage of the prediction intervals over the measured values. In most cases the expected level of coverage of the measured values within the prediction intervals was 95%. The prediction intervals were required to perform adequately under conditions of model misspecification. The results also indicate that instrument channel drifts are identifiable by observing the drop in the level of coverage of the prediction intervals to relatively low values, e.g. 30%. A comparative evaluation of the different empirical models was also performed. The evaluation considers the average estimation errors and the stability of the models under repeated Monte Carlo resampling. The results indicate the large uncertainty of ANN models applied to collinear data, and the utility of the NNPLS model for the same purpose. While the results from the LPR models remained consistent for data with or without collinearity, assuming proper regularization was applied. All of the methods studied herein were applied to a simulated data set for an initial evaluation of the methods, and data from two different U.S. nuclear power plants for the purposes of signal validation for on-line monitoring tasks." @default.
- W2082892263 created "2016-06-24" @default.
- W2082892263 creator A5069539307 @default.
- W2082892263 creator A5087018415 @default.
- W2082892263 date "2004-08-01" @default.
- W2082892263 modified "2023-09-26" @default.
- W2082892263 title "PREDICTION INTERVAL ESTIMATION TECHNIQUES FOR EMPIRICAL MODELING STRATEGIES AND THEIR APPLICATIONS TO SIGNAL VALIDATION TASKS" @default.
- W2082892263 cites W141760394 @default.
- W2082892263 cites W1489213086 @default.
- W2082892263 cites W1517940455 @default.
- W2082892263 cites W1527532036 @default.
- W2082892263 cites W15572362 @default.
- W2082892263 cites W1565481014 @default.
- W2082892263 cites W1571237640 @default.
- W2082892263 cites W1584799920 @default.
- W2082892263 cites W1586547218 @default.
- W2082892263 cites W1689445748 @default.
- W2082892263 cites W173981586 @default.
- W2082892263 cites W1894509194 @default.
- W2082892263 cites W1964168965 @default.
- W2082892263 cites W1965278830 @default.
- W2082892263 cites W1966089218 @default.
- W2082892263 cites W1969341260 @default.
- W2082892263 cites W1971713783 @default.
- W2082892263 cites W1973948212 @default.
- W2082892263 cites W1974473884 @default.
- W2082892263 cites W1975285668 @default.
- W2082892263 cites W1982029046 @default.
- W2082892263 cites W1984367183 @default.
- W2082892263 cites W1985579611 @default.
- W2082892263 cites W1985905466 @default.
- W2082892263 cites W1986900951 @default.
- W2082892263 cites W1988872522 @default.
- W2082892263 cites W1989295284 @default.
- W2082892263 cites W1990065616 @default.
- W2082892263 cites W1992270855 @default.
- W2082892263 cites W1992689270 @default.
- W2082892263 cites W1995843625 @default.
- W2082892263 cites W1995945562 @default.
- W2082892263 cites W1998485739 @default.
- W2082892263 cites W1998774964 @default.
- W2082892263 cites W1999993547 @default.
- W2082892263 cites W2001213989 @default.
- W2082892263 cites W2005580838 @default.
- W2082892263 cites W2006920325 @default.
- W2082892263 cites W2007066316 @default.
- W2082892263 cites W2007874268 @default.
- W2082892263 cites W2008353574 @default.
- W2082892263 cites W2008546969 @default.
- W2082892263 cites W2009270776 @default.
- W2082892263 cites W2013220899 @default.
- W2082892263 cites W2017977879 @default.
- W2082892263 cites W2018570354 @default.
- W2082892263 cites W2021834312 @default.
- W2082892263 cites W2024081693 @default.
- W2082892263 cites W2024424774 @default.
- W2082892263 cites W2024585065 @default.
- W2082892263 cites W2024590819 @default.
- W2082892263 cites W2027244596 @default.
- W2082892263 cites W2033201034 @default.
- W2082892263 cites W2034544282 @default.
- W2082892263 cites W2036445123 @default.
- W2082892263 cites W2037532484 @default.
- W2082892263 cites W2038654054 @default.
- W2082892263 cites W2042576083 @default.
- W2082892263 cites W2042880641 @default.
- W2082892263 cites W2043505896 @default.
- W2082892263 cites W2044602969 @default.
- W2082892263 cites W2047161049 @default.
- W2082892263 cites W2049423498 @default.
- W2082892263 cites W2057032881 @default.
- W2082892263 cites W2057074333 @default.
- W2082892263 cites W2058772015 @default.
- W2082892263 cites W2059507684 @default.
- W2082892263 cites W2062366565 @default.
- W2082892263 cites W2064385888 @default.
- W2082892263 cites W2070561681 @default.
- W2082892263 cites W2071128523 @default.
- W2082892263 cites W2072872824 @default.
- W2082892263 cites W2075136904 @default.
- W2082892263 cites W2078762901 @default.
- W2082892263 cites W2079309557 @default.
- W2082892263 cites W2079456977 @default.
- W2082892263 cites W2084229232 @default.
- W2082892263 cites W2084645644 @default.
- W2082892263 cites W2087070363 @default.
- W2082892263 cites W2090675121 @default.
- W2082892263 cites W2092067751 @default.
- W2082892263 cites W2092285362 @default.
- W2082892263 cites W2093189858 @default.
- W2082892263 cites W2095301394 @default.
- W2082892263 cites W2099111195 @default.
- W2082892263 cites W2102123872 @default.
- W2082892263 cites W2104504458 @default.
- W2082892263 cites W2107376597 @default.
- W2082892263 cites W2113442785 @default.
- W2082892263 cites W2118277375 @default.
- W2082892263 cites W2124181495 @default.
- W2082892263 cites W2125336244 @default.
- W2082892263 cites W2129476886 @default.