Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082941756> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2082941756 endingPage "854" @default.
- W2082941756 startingPage "841" @default.
- W2082941756 abstract "Enormous variations exist along rifted margins of the North Atlantic in the magmatic activity that accompanied continental breakup. The North Atlantic margins exhibit a full range of magmatic behaviour. One end of the spectrum (commonly termed ‘volcanic’ margins) is found in the northern North Atlantic off Greenland, Norway and northwest Britain, where huge volumes of igneous rock were added to the continental crust as it rifted, and the adjacent oceanic crust is considerably thicker than normal. The other end of the spectrum (so-called ‘non-volcanic’ margins) occurs further south off France and Spain, where only minor volcanism accompanied rifting and the oceanic crust immediately adjacent to the continental margin is thinner than normal oceanic crust. Results from seismic profiles are used to determine the volume and distribution of igneous crust accumulated as the continents broke up and seafloor spreading commenced. The volume of melt produced during rifting is controlled mainly by the temperature of the underlying asthenospheric mantle, and by the amount and rate of decompression as it rises beneath stretching and thinning lithosphere. Large quantities of igneous rock were produced as the continents broke up to form the North Atlantic where the newly initiated Iceland plume brought abnormally hot mantle beneath the rift. Much smaller quantities of melt were produced further south, where mantle temperatures were normal during rifting. The distribution of igneous rocks across the continental margin and the adjacent oceanic crust is controlled by the rate at which melt is produced and by the ease with which it can intrude laterally in the crust. Where the rate of stretching is very slow and the rifting is spread over many millions or even tens of millions of years, as is common during the initial stages of rifting, then the rising asthenospheric mantle has time to cool by conduction. Heat is lost from the asthenospheric mantle both vertically into the overlying water layer and laterally into the colder wedges of continental lithosphere on either side of the rifted region. As a consequence of the reduced mantle temperatures, considerably less partial melting occurs in the slowly rising asthenospheric mantle than in mantle which rises rapidly beneath rifts. This explains the abnormally thin oceanic crust found adjacent to the non-volcanic rifted continental margins in the North Atlantic. As the new ocean widens, the spreading centre becomes isolated from the continental margins on either side by newly formed, warm oceanic lithosphere, and the rate of rifting generally increases. The oceanic crust then attains its equilibrium thickness as conductive heat loss from the rising asthenospheric mantle reduces, and all the melt formed by decompression of the mantle solidifies close to the spreading axis. Basaltic melts can intrude continental crust far more easily than oceanic crust. Basaltic dykes may extend many hundreds of kilometres away from the magma source beneath continental rifts. This redistributes melt laterally towards the continent in both volcanic and, to a lesser extent, in non-volcanic margins and may be a contributory factor in leaving unusually thin crust in the first-formed ocean immediately adjacent to some rifted margins. It also allows melt formed under volcanic rifts to migrate large distances laterally as is seen in the Rockall area northwest of Britain." @default.
- W2082941756 created "2016-06-24" @default.
- W2082941756 creator A5014652050 @default.
- W2082941756 date "1992-09-01" @default.
- W2082941756 modified "2023-10-16" @default.
- W2082941756 title "Crustal structure and magmatism of North Atlantic continental margins" @default.
- W2082941756 cites W1972044496 @default.
- W2082941756 cites W1978187880 @default.
- W2082941756 cites W1981189484 @default.
- W2082941756 cites W1990740187 @default.
- W2082941756 cites W1992891991 @default.
- W2082941756 cites W1993773783 @default.
- W2082941756 cites W1995473244 @default.
- W2082941756 cites W1996052457 @default.
- W2082941756 cites W2007962036 @default.
- W2082941756 cites W2022648729 @default.
- W2082941756 cites W2031248775 @default.
- W2082941756 cites W2055848068 @default.
- W2082941756 cites W2059503722 @default.
- W2082941756 cites W2065063263 @default.
- W2082941756 cites W2072805282 @default.
- W2082941756 cites W2089431046 @default.
- W2082941756 cites W2102767906 @default.
- W2082941756 cites W2108432444 @default.
- W2082941756 cites W2113227861 @default.
- W2082941756 cites W2115995722 @default.
- W2082941756 cites W2120102772 @default.
- W2082941756 cites W2120373540 @default.
- W2082941756 cites W2127153603 @default.
- W2082941756 cites W2153511421 @default.
- W2082941756 cites W2158840877 @default.
- W2082941756 cites W2161011160 @default.
- W2082941756 cites W2167542788 @default.
- W2082941756 cites W2169823548 @default.
- W2082941756 cites W2322032800 @default.
- W2082941756 cites W2884387275 @default.
- W2082941756 cites W4232415449 @default.
- W2082941756 cites W4232778697 @default.
- W2082941756 cites W74843641 @default.
- W2082941756 doi "https://doi.org/10.1144/gsjgs.149.5.0841" @default.
- W2082941756 hasPublicationYear "1992" @default.
- W2082941756 type Work @default.
- W2082941756 sameAs 2082941756 @default.
- W2082941756 citedByCount "123" @default.
- W2082941756 countsByYear W20829417562012 @default.
- W2082941756 countsByYear W20829417562013 @default.
- W2082941756 countsByYear W20829417562014 @default.
- W2082941756 countsByYear W20829417562015 @default.
- W2082941756 countsByYear W20829417562016 @default.
- W2082941756 countsByYear W20829417562017 @default.
- W2082941756 countsByYear W20829417562018 @default.
- W2082941756 countsByYear W20829417562019 @default.
- W2082941756 countsByYear W20829417562020 @default.
- W2082941756 countsByYear W20829417562021 @default.
- W2082941756 countsByYear W20829417562022 @default.
- W2082941756 countsByYear W20829417562023 @default.
- W2082941756 crossrefType "journal-article" @default.
- W2082941756 hasAuthorship W2082941756A5014652050 @default.
- W2082941756 hasConcept C127313418 @default.
- W2082941756 hasConcept C151730666 @default.
- W2082941756 hasConcept C162973429 @default.
- W2082941756 hasConcept C17409809 @default.
- W2082941756 hasConcept C1965285 @default.
- W2082941756 hasConcept C201867031 @default.
- W2082941756 hasConcept C42787717 @default.
- W2082941756 hasConcept C77928131 @default.
- W2082941756 hasConceptScore W2082941756C127313418 @default.
- W2082941756 hasConceptScore W2082941756C151730666 @default.
- W2082941756 hasConceptScore W2082941756C162973429 @default.
- W2082941756 hasConceptScore W2082941756C17409809 @default.
- W2082941756 hasConceptScore W2082941756C1965285 @default.
- W2082941756 hasConceptScore W2082941756C201867031 @default.
- W2082941756 hasConceptScore W2082941756C42787717 @default.
- W2082941756 hasConceptScore W2082941756C77928131 @default.
- W2082941756 hasIssue "5" @default.
- W2082941756 hasLocation W20829417561 @default.
- W2082941756 hasOpenAccess W2082941756 @default.
- W2082941756 hasPrimaryLocation W20829417561 @default.
- W2082941756 hasRelatedWork W1531601525 @default.
- W2082941756 hasRelatedWork W1608648646 @default.
- W2082941756 hasRelatedWork W1981226349 @default.
- W2082941756 hasRelatedWork W2041681251 @default.
- W2082941756 hasRelatedWork W2948807893 @default.
- W2082941756 hasRelatedWork W3173606202 @default.
- W2082941756 hasRelatedWork W3183948672 @default.
- W2082941756 hasRelatedWork W3195269876 @default.
- W2082941756 hasRelatedWork W2778153218 @default.
- W2082941756 hasRelatedWork W3110381201 @default.
- W2082941756 hasVolume "149" @default.
- W2082941756 isParatext "false" @default.
- W2082941756 isRetracted "false" @default.
- W2082941756 magId "2082941756" @default.
- W2082941756 workType "article" @default.