Matches in SemOpenAlex for { <https://semopenalex.org/work/W2082967199> ?p ?o ?g. }
- W2082967199 endingPage "4989" @default.
- W2082967199 startingPage "4979" @default.
- W2082967199 abstract "Ordered surface nanostructures have attracted much attention in biotechnology and biomedical engineering because of their potential to modulate cell–surface interactions in a controllable manner. However, the ability to fabricate large area ordered nanostructures is limited because of high costs and low speed of fabrication. Here, we have fabricated ordered nanostructures with large surface areas (1.5 × 1.5 cm2) using a combination of facile techniques including colloidal self-assembly, colloidal lithography and glancing angle deposition (GLAD). Polystyrene (722 nm) colloids were self-assembled into a hexagonally close-packed (hcp) crystal array at the water–air interface, transferred on a biocompatible tantalum (Ta) surface and used as a mask to generate an ordered Ta pattern. The Ta was deposited by sputter coating through the crystal mask creating approximately 60-nm-high feature sizes. The feature size was further increased by approximately 200-nm-height respectively using GLAD, resulting in the fabrication of four different surfaces (FLAT, Ta60, GLAD100, and GLAD200). Cell adhesion, proliferation, and osteogenic differentiation of primary human adipose-derived stem cells (hADSCs) were studied on these ordered nanostructures for up to 2 weeks. Our results suggested that cell spreading, focal adhesion formation, and filopodia extension of hADSCs were inhibited on the GLAD surfaces, while the growth rate was similar between each surface. Immunostaining for type I collagen (COL1) and osteocalcin (OC) showed that there was higher osteogenic components deposited on the GLAD surfaces compared to the Ta60 and FLAT surfaces after 1 week of osteogenic culture. After 2 weeks of osteogenic culture, alkaline phosphatase (ALP) activity and the amount of calcium was higher on the GLAD surfaces. In addition, osteoblast-like cells were confluent on Ta60 and FLAT surfaces, whereas the GLAD surfaces were not fully covered suggesting that the cell–cell interactions are stronger than cell–substrate interactions on GLAD surfaces. Visible extracellular matrix deposits decorated the porous surface can be found on the GLAD surfaces. Depth profiling of surface components using a new Ar cluster source and X-ray photoelectron spectroscopy (XPS) showed that deposited extracellular matrix on GLAD surfaces is rich in nitrogen. The fabricated ordered surface nanotopographies have potential to be applied in diverse fields, and demonstrate that the behavior of human stem cells can be directed on these ordered nanotopographies, providing new knowledge for applications in biomaterials and tissue engineering." @default.
- W2082967199 created "2016-06-24" @default.
- W2082967199 creator A5015656505 @default.
- W2082967199 creator A5017136364 @default.
- W2082967199 creator A5041466091 @default.
- W2082967199 creator A5063239808 @default.
- W2082967199 creator A5079030401 @default.
- W2082967199 creator A5084929010 @default.
- W2082967199 date "2015-02-20" @default.
- W2082967199 modified "2023-10-18" @default.
- W2082967199 title "Modulation of Human Mesenchymal Stem Cell Behavior on Ordered Tantalum Nanotopographies Fabricated Using Colloidal Lithography and Glancing Angle Deposition" @default.
- W2082967199 cites W1522000205 @default.
- W2082967199 cites W1964983685 @default.
- W2082967199 cites W1974647788 @default.
- W2082967199 cites W1978862190 @default.
- W2082967199 cites W1981802321 @default.
- W2082967199 cites W1984614174 @default.
- W2082967199 cites W1993821059 @default.
- W2082967199 cites W1994461769 @default.
- W2082967199 cites W1996703318 @default.
- W2082967199 cites W1996997952 @default.
- W2082967199 cites W1997348707 @default.
- W2082967199 cites W2002943992 @default.
- W2082967199 cites W2003826156 @default.
- W2082967199 cites W2007942163 @default.
- W2082967199 cites W2008419577 @default.
- W2082967199 cites W2009072133 @default.
- W2082967199 cites W2014190397 @default.
- W2082967199 cites W2015979204 @default.
- W2082967199 cites W2017208938 @default.
- W2082967199 cites W2020724077 @default.
- W2082967199 cites W2025018535 @default.
- W2082967199 cites W2026556106 @default.
- W2082967199 cites W2027458527 @default.
- W2082967199 cites W2028814820 @default.
- W2082967199 cites W2032098262 @default.
- W2082967199 cites W2034514595 @default.
- W2082967199 cites W2037083085 @default.
- W2082967199 cites W2037121187 @default.
- W2082967199 cites W2039973857 @default.
- W2082967199 cites W2049020426 @default.
- W2082967199 cites W2053139333 @default.
- W2082967199 cites W2061261268 @default.
- W2082967199 cites W2068701989 @default.
- W2082967199 cites W2070235232 @default.
- W2082967199 cites W2076020557 @default.
- W2082967199 cites W2081780371 @default.
- W2082967199 cites W2090437185 @default.
- W2082967199 cites W2093056513 @default.
- W2082967199 cites W2100940899 @default.
- W2082967199 cites W2114919779 @default.
- W2082967199 cites W2118267237 @default.
- W2082967199 cites W2138970410 @default.
- W2082967199 cites W2141378570 @default.
- W2082967199 cites W2154421213 @default.
- W2082967199 cites W2163309241 @default.
- W2082967199 cites W2163884408 @default.
- W2082967199 cites W2168644774 @default.
- W2082967199 cites W2171381083 @default.
- W2082967199 cites W2315107219 @default.
- W2082967199 cites W2330884559 @default.
- W2082967199 cites W2333321672 @default.
- W2082967199 doi "https://doi.org/10.1021/acsami.5b00107" @default.
- W2082967199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25664369" @default.
- W2082967199 hasPublicationYear "2015" @default.
- W2082967199 type Work @default.
- W2082967199 sameAs 2082967199 @default.
- W2082967199 citedByCount "55" @default.
- W2082967199 countsByYear W20829671992015 @default.
- W2082967199 countsByYear W20829671992016 @default.
- W2082967199 countsByYear W20829671992017 @default.
- W2082967199 countsByYear W20829671992018 @default.
- W2082967199 countsByYear W20829671992019 @default.
- W2082967199 countsByYear W20829671992020 @default.
- W2082967199 countsByYear W20829671992021 @default.
- W2082967199 countsByYear W20829671992022 @default.
- W2082967199 countsByYear W20829671992023 @default.
- W2082967199 crossrefType "journal-article" @default.
- W2082967199 hasAuthorship W2082967199A5015656505 @default.
- W2082967199 hasAuthorship W2082967199A5017136364 @default.
- W2082967199 hasAuthorship W2082967199A5041466091 @default.
- W2082967199 hasAuthorship W2082967199A5063239808 @default.
- W2082967199 hasAuthorship W2082967199A5079030401 @default.
- W2082967199 hasAuthorship W2082967199A5084929010 @default.
- W2082967199 hasConcept C125574357 @default.
- W2082967199 hasConcept C127413603 @default.
- W2082967199 hasConcept C136525101 @default.
- W2082967199 hasConcept C142724271 @default.
- W2082967199 hasConcept C159985019 @default.
- W2082967199 hasConcept C171250308 @default.
- W2082967199 hasConcept C186187911 @default.
- W2082967199 hasConcept C191897082 @default.
- W2082967199 hasConcept C192562407 @default.
- W2082967199 hasConcept C204787440 @default.
- W2082967199 hasConcept C25479853 @default.
- W2082967199 hasConcept C2777803738 @default.
- W2082967199 hasConcept C42360764 @default.
- W2082967199 hasConcept C514619126 @default.