Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083005323> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2083005323 abstract "It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation(5) involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping(6) and density volume rendering(7). We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies." @default.
- W2083005323 created "2016-06-24" @default.
- W2083005323 creator A5027719505 @default.
- W2083005323 creator A5084999538 @default.
- W2083005323 date "2013-02-25" @default.
- W2083005323 modified "2023-09-24" @default.
- W2083005323 title "Trajectory Data Analyses for Pedestrian Space-time Activity Study" @default.
- W2083005323 cites W1969301519 @default.
- W2083005323 cites W2064659239 @default.
- W2083005323 cites W2066937690 @default.
- W2083005323 cites W2072459056 @default.
- W2083005323 cites W2092288223 @default.
- W2083005323 cites W2115609520 @default.
- W2083005323 cites W2119231080 @default.
- W2083005323 cites W2142703753 @default.
- W2083005323 cites W2148420803 @default.
- W2083005323 cites W2295355433 @default.
- W2083005323 cites W3098371818 @default.
- W2083005323 cites W578585133 @default.
- W2083005323 cites W940319128 @default.
- W2083005323 doi "https://doi.org/10.3791/50130" @default.
- W2083005323 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3605616" @default.
- W2083005323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23462533" @default.
- W2083005323 hasPublicationYear "2013" @default.
- W2083005323 type Work @default.
- W2083005323 sameAs 2083005323 @default.
- W2083005323 citedByCount "11" @default.
- W2083005323 countsByYear W20830053232013 @default.
- W2083005323 countsByYear W20830053232015 @default.
- W2083005323 countsByYear W20830053232017 @default.
- W2083005323 countsByYear W20830053232018 @default.
- W2083005323 countsByYear W20830053232020 @default.
- W2083005323 countsByYear W20830053232021 @default.
- W2083005323 crossrefType "journal-article" @default.
- W2083005323 hasAuthorship W2083005323A5027719505 @default.
- W2083005323 hasAuthorship W2083005323A5084999538 @default.
- W2083005323 hasBestOaLocation W20830053232 @default.
- W2083005323 hasConcept C121332964 @default.
- W2083005323 hasConcept C124101348 @default.
- W2083005323 hasConcept C127413603 @default.
- W2083005323 hasConcept C1276947 @default.
- W2083005323 hasConcept C13662910 @default.
- W2083005323 hasConcept C142724271 @default.
- W2083005323 hasConcept C154945302 @default.
- W2083005323 hasConcept C22212356 @default.
- W2083005323 hasConcept C2522767166 @default.
- W2083005323 hasConcept C2777113093 @default.
- W2083005323 hasConcept C2779134260 @default.
- W2083005323 hasConcept C41008148 @default.
- W2083005323 hasConcept C524204448 @default.
- W2083005323 hasConcept C60229501 @default.
- W2083005323 hasConcept C71924100 @default.
- W2083005323 hasConcept C761482 @default.
- W2083005323 hasConcept C76155785 @default.
- W2083005323 hasConcept C79403827 @default.
- W2083005323 hasConceptScore W2083005323C121332964 @default.
- W2083005323 hasConceptScore W2083005323C124101348 @default.
- W2083005323 hasConceptScore W2083005323C127413603 @default.
- W2083005323 hasConceptScore W2083005323C1276947 @default.
- W2083005323 hasConceptScore W2083005323C13662910 @default.
- W2083005323 hasConceptScore W2083005323C142724271 @default.
- W2083005323 hasConceptScore W2083005323C154945302 @default.
- W2083005323 hasConceptScore W2083005323C22212356 @default.
- W2083005323 hasConceptScore W2083005323C2522767166 @default.
- W2083005323 hasConceptScore W2083005323C2777113093 @default.
- W2083005323 hasConceptScore W2083005323C2779134260 @default.
- W2083005323 hasConceptScore W2083005323C41008148 @default.
- W2083005323 hasConceptScore W2083005323C524204448 @default.
- W2083005323 hasConceptScore W2083005323C60229501 @default.
- W2083005323 hasConceptScore W2083005323C71924100 @default.
- W2083005323 hasConceptScore W2083005323C761482 @default.
- W2083005323 hasConceptScore W2083005323C76155785 @default.
- W2083005323 hasConceptScore W2083005323C79403827 @default.
- W2083005323 hasIssue "72" @default.
- W2083005323 hasLocation W20830053231 @default.
- W2083005323 hasLocation W20830053232 @default.
- W2083005323 hasLocation W20830053233 @default.
- W2083005323 hasLocation W20830053234 @default.
- W2083005323 hasOpenAccess W2083005323 @default.
- W2083005323 hasPrimaryLocation W20830053231 @default.
- W2083005323 hasRelatedWork W2121104219 @default.
- W2083005323 hasRelatedWork W2260356107 @default.
- W2083005323 hasRelatedWork W2378933573 @default.
- W2083005323 hasRelatedWork W2603493555 @default.
- W2083005323 hasRelatedWork W3046508333 @default.
- W2083005323 hasRelatedWork W3047668811 @default.
- W2083005323 hasRelatedWork W3116669292 @default.
- W2083005323 hasRelatedWork W3128397692 @default.
- W2083005323 hasRelatedWork W4309296557 @default.
- W2083005323 hasRelatedWork W4313037544 @default.
- W2083005323 isParatext "false" @default.
- W2083005323 isRetracted "false" @default.
- W2083005323 magId "2083005323" @default.
- W2083005323 workType "article" @default.