Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083048215> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2083048215 endingPage "1499" @default.
- W2083048215 startingPage "1488" @default.
- W2083048215 abstract "A coding theorem is proved for a class of stationary channels with feedback in which the output Y <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sub> = f(X <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n-m</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> , Z <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n-m</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> ) is the function of the current and past m symbols from the channel input X <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sub> and the stationary ergodic channel noise Z <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sub> . In particular, it is shown that the feedback capacity is equal to lim <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>nrarr</sub> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>infin</sub> sup <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>p(x</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>||y</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n-1</sup> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>)</sub> 1/n I(X <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> rarr Y <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> ) where I(X <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> rarr Y <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> ) = Sigma <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i=1</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> I(X <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sup> ; Y <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> |Y <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i-1</sup> ) denotes the Massey directed information from the channel input to the output, and the supremum is taken over all causally conditioned distributions p(x <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> ||y <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n-1</sup> ) = Pi <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i=1</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> p(x <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> |x <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i-1</sup> ,y <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i-1</sup> ). The main ideas of the proof are a classical application of the Shannon strategy for coding with side information and a new elementary coding technique for the given channel model without feedback, which is in a sense dual to Gallager's lossy coding of stationary ergodic sources. A similar approach gives a simple alternative proof of coding theorems for finite state channels by Yang-Kavcic-Tatikonda, Chen-Berger, and Permuter-Weissman-Goldsmith." @default.
- W2083048215 created "2016-06-24" @default.
- W2083048215 creator A5036511994 @default.
- W2083048215 date "2008-04-01" @default.
- W2083048215 modified "2023-10-16" @default.
- W2083048215 title "A Coding Theorem for a Class of Stationary Channels With Feedback" @default.
- W2083048215 cites W1978910765 @default.
- W2083048215 cites W1993172211 @default.
- W2083048215 cites W1993944611 @default.
- W2083048215 cites W1995875735 @default.
- W2083048215 cites W2018640312 @default.
- W2083048215 cites W2020347709 @default.
- W2083048215 cites W2068028939 @default.
- W2083048215 cites W2096890136 @default.
- W2083048215 cites W2100984043 @default.
- W2083048215 cites W2117028910 @default.
- W2083048215 cites W2118917401 @default.
- W2083048215 cites W2123485355 @default.
- W2083048215 cites W2125865271 @default.
- W2083048215 cites W2129885443 @default.
- W2083048215 cites W2135460279 @default.
- W2083048215 cites W2139657234 @default.
- W2083048215 cites W2141021549 @default.
- W2083048215 cites W2142522684 @default.
- W2083048215 cites W2149084193 @default.
- W2083048215 cites W2155864264 @default.
- W2083048215 cites W2158130000 @default.
- W2083048215 cites W2164684058 @default.
- W2083048215 cites W2164914972 @default.
- W2083048215 cites W2165053755 @default.
- W2083048215 cites W2914202085 @default.
- W2083048215 cites W4210736171 @default.
- W2083048215 cites W4230278731 @default.
- W2083048215 cites W4251984466 @default.
- W2083048215 doi "https://doi.org/10.1109/tit.2008.917685" @default.
- W2083048215 hasPublicationYear "2008" @default.
- W2083048215 type Work @default.
- W2083048215 sameAs 2083048215 @default.
- W2083048215 citedByCount "102" @default.
- W2083048215 countsByYear W20830482152012 @default.
- W2083048215 countsByYear W20830482152013 @default.
- W2083048215 countsByYear W20830482152014 @default.
- W2083048215 countsByYear W20830482152015 @default.
- W2083048215 countsByYear W20830482152016 @default.
- W2083048215 countsByYear W20830482152017 @default.
- W2083048215 countsByYear W20830482152018 @default.
- W2083048215 countsByYear W20830482152019 @default.
- W2083048215 countsByYear W20830482152020 @default.
- W2083048215 countsByYear W20830482152021 @default.
- W2083048215 countsByYear W20830482152022 @default.
- W2083048215 countsByYear W20830482152023 @default.
- W2083048215 crossrefType "journal-article" @default.
- W2083048215 hasAuthorship W2083048215A5036511994 @default.
- W2083048215 hasBestOaLocation W20830482152 @default.
- W2083048215 hasConcept C11413529 @default.
- W2083048215 hasConcept C41008148 @default.
- W2083048215 hasConceptScore W2083048215C11413529 @default.
- W2083048215 hasConceptScore W2083048215C41008148 @default.
- W2083048215 hasIssue "4" @default.
- W2083048215 hasLocation W20830482151 @default.
- W2083048215 hasLocation W20830482152 @default.
- W2083048215 hasOpenAccess W2083048215 @default.
- W2083048215 hasPrimaryLocation W20830482151 @default.
- W2083048215 hasRelatedWork W2051487156 @default.
- W2083048215 hasRelatedWork W2073681303 @default.
- W2083048215 hasRelatedWork W2317200988 @default.
- W2083048215 hasRelatedWork W2350741829 @default.
- W2083048215 hasRelatedWork W2358668433 @default.
- W2083048215 hasRelatedWork W2376932109 @default.
- W2083048215 hasRelatedWork W2382290278 @default.
- W2083048215 hasRelatedWork W2390279801 @default.
- W2083048215 hasRelatedWork W2748952813 @default.
- W2083048215 hasRelatedWork W2899084033 @default.
- W2083048215 hasVolume "54" @default.
- W2083048215 isParatext "false" @default.
- W2083048215 isRetracted "false" @default.
- W2083048215 magId "2083048215" @default.
- W2083048215 workType "article" @default.