Matches in SemOpenAlex for { <https://semopenalex.org/work/W2083048954> ?p ?o ?g. }
- W2083048954 endingPage "433" @default.
- W2083048954 startingPage "426" @default.
- W2083048954 abstract "There is growing interest in the development of prognostic models for predicting the occurrence of acute graft-vs-host disease (aGVHD) after unrelated donor hematopoietic stem cell transplantation. A high number of variables have been shown to play a role in aGVHD, but the search for a predictive algorithm is still ongoing. Artificial neural networks (ANNs) represent an attractive alternative to multivariate analysis for clinical prognosis. So far, no reports have investigated the ability of ANNs in predicting HSCT outcome.We compared the prognostic performance of ANNs with that of logistic regression (LR) in 78 beta-thalassemia major patients given unrelated donor hematopoietic stem cell transplantation. Twenty-four independent variables were analyzed for their potential impact on outcomes.Twenty-six patients (33.3%) developed grade II to IV aGVHD. In multivariate analysis, homozygosity for donor KIR haplotype A (p = 0.03), donor age (p = 0.05), and donor homozygosity for the deletion of the human leukocyte antigen-G 14-bp polymorphism (p = 0.05) were independently significantly correlated to aGVHD. The mean sensitivity of LR and ANNs (capability of predicting aGVHD in patients who developed aGVHD) in test datasets was 21.7% and 83.3%, respectively (p < 0.001); the mean specificity (capability of predicting absence of aGVHD in patients who did not develop aGVHD) was 80.5% and 90.1%, respectively (p = NS).Although ANNs are unable to calculate the weight of single variables on outcomes, they were found to have a better performance than LR. A combination of these two methods could be more efficient in predicting outcomes and help tailor GVHD prophylaxis regimens according to the predicted risk of each patient. Whether ANN technology will provide better predictive performance when applied to other datasets remains to be confirmed." @default.
- W2083048954 created "2016-06-24" @default.
- W2083048954 creator A5005006393 @default.
- W2083048954 creator A5017019063 @default.
- W2083048954 creator A5022712318 @default.
- W2083048954 creator A5025323295 @default.
- W2083048954 creator A5040478175 @default.
- W2083048954 creator A5049532940 @default.
- W2083048954 creator A5063569853 @default.
- W2083048954 creator A5069286285 @default.
- W2083048954 creator A5074396899 @default.
- W2083048954 creator A5077335202 @default.
- W2083048954 date "2010-05-01" @default.
- W2083048954 modified "2023-09-30" @default.
- W2083048954 title "Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients" @default.
- W2083048954 cites W193514409 @default.
- W2083048954 cites W1962706925 @default.
- W2083048954 cites W1969774565 @default.
- W2083048954 cites W1973074473 @default.
- W2083048954 cites W1981976602 @default.
- W2083048954 cites W1987566375 @default.
- W2083048954 cites W1988432688 @default.
- W2083048954 cites W1988649014 @default.
- W2083048954 cites W1990569845 @default.
- W2083048954 cites W2013848736 @default.
- W2083048954 cites W2023855751 @default.
- W2083048954 cites W2025383600 @default.
- W2083048954 cites W2026042561 @default.
- W2083048954 cites W2044734436 @default.
- W2083048954 cites W2044835282 @default.
- W2083048954 cites W2051420798 @default.
- W2083048954 cites W2053278212 @default.
- W2083048954 cites W2054124482 @default.
- W2083048954 cites W2066269914 @default.
- W2083048954 cites W2069988626 @default.
- W2083048954 cites W2079786360 @default.
- W2083048954 cites W2080826082 @default.
- W2083048954 cites W2084936727 @default.
- W2083048954 cites W2085598706 @default.
- W2083048954 cites W2088874310 @default.
- W2083048954 cites W2097567235 @default.
- W2083048954 cites W2111936593 @default.
- W2083048954 cites W2114041730 @default.
- W2083048954 cites W2127203236 @default.
- W2083048954 cites W2129925362 @default.
- W2083048954 cites W2170672799 @default.
- W2083048954 cites W2315168906 @default.
- W2083048954 cites W2342340077 @default.
- W2083048954 cites W2403072330 @default.
- W2083048954 cites W2764628773 @default.
- W2083048954 doi "https://doi.org/10.1016/j.exphem.2010.02.012" @default.
- W2083048954 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20206661" @default.
- W2083048954 hasPublicationYear "2010" @default.
- W2083048954 type Work @default.
- W2083048954 sameAs 2083048954 @default.
- W2083048954 citedByCount "31" @default.
- W2083048954 countsByYear W20830489542012 @default.
- W2083048954 countsByYear W20830489542013 @default.
- W2083048954 countsByYear W20830489542014 @default.
- W2083048954 countsByYear W20830489542015 @default.
- W2083048954 countsByYear W20830489542016 @default.
- W2083048954 countsByYear W20830489542017 @default.
- W2083048954 countsByYear W20830489542018 @default.
- W2083048954 countsByYear W20830489542019 @default.
- W2083048954 countsByYear W20830489542020 @default.
- W2083048954 countsByYear W20830489542021 @default.
- W2083048954 countsByYear W20830489542022 @default.
- W2083048954 countsByYear W20830489542023 @default.
- W2083048954 crossrefType "journal-article" @default.
- W2083048954 hasAuthorship W2083048954A5005006393 @default.
- W2083048954 hasAuthorship W2083048954A5017019063 @default.
- W2083048954 hasAuthorship W2083048954A5022712318 @default.
- W2083048954 hasAuthorship W2083048954A5025323295 @default.
- W2083048954 hasAuthorship W2083048954A5040478175 @default.
- W2083048954 hasAuthorship W2083048954A5049532940 @default.
- W2083048954 hasAuthorship W2083048954A5063569853 @default.
- W2083048954 hasAuthorship W2083048954A5069286285 @default.
- W2083048954 hasAuthorship W2083048954A5074396899 @default.
- W2083048954 hasAuthorship W2083048954A5077335202 @default.
- W2083048954 hasBestOaLocation W20830489541 @default.
- W2083048954 hasConcept C109159458 @default.
- W2083048954 hasConcept C119857082 @default.
- W2083048954 hasConcept C126322002 @default.
- W2083048954 hasConcept C143998085 @default.
- W2083048954 hasConcept C151956035 @default.
- W2083048954 hasConcept C161584116 @default.
- W2083048954 hasConcept C203014093 @default.
- W2083048954 hasConcept C2777408962 @default.
- W2083048954 hasConcept C2777799968 @default.
- W2083048954 hasConcept C2779134260 @default.
- W2083048954 hasConcept C2779972918 @default.
- W2083048954 hasConcept C28328180 @default.
- W2083048954 hasConcept C2911091166 @default.
- W2083048954 hasConcept C38180746 @default.
- W2083048954 hasConcept C41008148 @default.
- W2083048954 hasConcept C54355233 @default.
- W2083048954 hasConcept C71924100 @default.
- W2083048954 hasConcept C86803240 @default.